A Study of 3D Device Description and its Delaunay Partitioning

Masaaki TOMIZAWA, and Akira YOSHII NTT LSI Laboratories 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan Phone: +81-462-40-2149, FAX: +81-462-40-4306

Abstract

The parasitic elements such as peripheral capacitance and resistance degrade the device performance with the reduction of the device size. For such a small-sized device design, it is necessary to take the three-dimensional (3d) device shape into account in device modeling. Therefore, an efficient algorithm for the 3d-device shape input and 3d-element partitioning are acutely needed. In this paper, we have investigated a user-friendly algorithm of such input and partitioning suitable for 3d-device modeling.

In the process of the constructing the 3d-device shape, it is imperative that the interactive input and modification can be easily and also frequently done by users. To facillitate a user-friendly construction, we use an engineering workstation. Furthermore, data structures, which describe 3d-device shape are hiearachically composed from vertices to regions. Therefore, in our approach, a user inputs only 2d-device cross-section data at each of the 3d-coordinates with a pointing device (mouse). The 3d-device shape is capable of automatically constructed with the interpolation of each 2d cross-section data at the specified 3d-coordinate. Figure 1 shows a typical input process for a 3d-device shape, and Fig.2 shows the data structure. With this approach, most semiconductor devices can be constructed in a user-friendly manner.

Furthermore, 3d-element partitioning suitable for the discretization of basic equations are investigated. First, grids are distributed tetragonally in the specified 3d-device, in which there are always grids on the vertices. Successively, a hypothetical body larger than the 3d-device is constructed using grids distributed in the device; then body can be partitioned by turns with tetrahedral elements based on a Delaunay partitioning¹⁾, in which there are no grids within the circumsphere for each element. Finally, all of elements including the hypothetical grids which compose the body are deleted. Using this process, a 3d-device can be partitioned with tetrahedral elements. These elements provide great flexibility in the device geometry and are also suitable for the finite element method as a discretization of the 3-d differential equations. Figure 3 shows typical 3dpartitioned-elements using this partitioning algorithm. Table 1 is an example using these elements, in which we have successfully discretized Poisson's equation and calculated the 3d-wired capacitance by the finite element method as shown in Table 1.

References

[1] M.Sever: "Delaunay Partitioning in Three dimensions and Semiconductor Models" COMPEL - The INT. J. for Comp. and Math. in IEEE, 5 pp.75-93 (1986).

Table.1 Calculated capacitance matrix of the wired capacitance. The integer with parenthesis corresponds to the biased electrode and the others, grounded electrodes in Fig.3.

Fig.2 Data structure for 3d-device shape description.

1) - 1) - 1) - 1) - 1) - 1) -	1> 2> 3> 4> 6>	-2.8832156458D-15 1.0919360322D-15 1.5281434465D-20 4.4002931882D-16 8.3396603124D-16 4.5729467741D-16
2) - 2) - 2) - 2) - 2) - 2) - 2) -	1> 2> 3> 4> 5> 6>	1.0919360322D-15 -6.0907773340D-15 8.1909730688D-16 7.9786847249D-16 1.5216879896D-15 8.4832949460D-16
3) - 3) - 3) - 3) - 3) - 3) - 3) -	1> 2> 3> 4> 5> 6>	1.5281430711D-20 8.1909730687D-16 -3.4406855280D-15 4.1830506854D-16 7.9028421909D-16 4.4610634233D-16
4) -	1>	4.4002931882D-16
4) -	2>	7.9786847249D-16
4) -	3>	4.1830506854D-16
4) -	4>	-1.7544066129D-15
4) -	5>	9.8203753007D-17
4) -	6>	0.000000000D+00
5) -	1>	8.3396603124D-16
5) -	2>	1.5216879896D-15
5) -	3>	7.9028421909D-16
5) -	4>	9.8203753006D-17
5) -	5>	-3.2705726455D-15
5) -	6>	2.6430652600D-17
6) -	1>	4.5729467741D-16
6) -	2>	8.4832949460D-16
6) -	3>	4.4610634233D-16
6) -	4>	0.000000000D+00
6) -	5>	2.6430652600D-17
6) -	6>	-1.7781611669D-15