A Study of 3D Device Description and its Delaunay Partitioning

Masaaki TOMIZAWA, and Akira YOSHII
NTT LSI Laboratories
3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan
Phone: $+81-462-40-2149$, FAX: $+81-462-40-4306$

Abstract

The parasitic elements such as peripheral capacitance and resistance degrade the device performance with the reduction of the device size. For such a small-sized device design, it is necessary to take the three-dimensional (3d) device shape into account in device modeling. Therefore, an efficient algorithm for the 3d-device shape input and 3 d -element partitioning are acutely needed. In this paper, we have investigated a user-friendly algorithm of such input and partitioning suitable for 3 d -device modeling.

In the process of the constructing the 3 d-device shape, it is imperative that the interactive input and modification can be easily and also frequently done by users. To facillitate a user-friendly construction, we use an engineering workstation. Furthermore, data stroctures, which describe 3d-device shape are hiearachically compcesl from vertices to regions. Therefore, in our approach, a user inputs only 2 d -device cross-section data at each of the 3 d -coordinates with a pointing device (mouse). The 3 d -device shape is capable of automatically constructed with the interpolation of each 2 d crosssection data at the specified 3 d -coordinate. Figure 1 shows a typical input process for a 3d-device shape, and Fig. 2 shows the data structure. With this approach, most semiconductor devices can be constructed in a user-friendly manner.

Furthermore, 3d-element partitioning suitable for the discretization of basic equations are investigated. First, grids are distributed tetragonally in the specified 3d-device, in which there are always grids on the vertices. Successively, a hypothetical body larger than the 3d-device is constructed using grids distributed in the device; then body can be partitioned by turns with tetrahedral elements based on a Delaunay partitioning ${ }^{1)}$, in which there are no grids within the circumsphere for each element. Finally, all of elements including the hypothetical grids which compose the body are deleted. Using this process, a 3 d -device can be partitioned with tetrahedral elements. These elements provide great flexibility in the device geometry and are also suitable for the finite element method as a discretization of the 3-d differential equations. Figure 3 shows typical 3d-partitioned-elements using this partitioning algorithm. Table 1 is an example using these elements, in which we have successfully discretized Poisson's equation and calculated the 3 d -wired capacitance by the finite element method as shown in Table 1.

References

[1] M.Sever: "Delaunay Partitioning in Three dimensions and Semiconductor Models" COMPEL - The INT. J. for Comp. and Math. in IEEE, 5 pp.75-93 (1986).

Fig. 2 Data structure for 3d-device shape description.

Fig. 1 Example of the input process of the 3 d -device shape.

Fig. 3 Example of the partitioning.

Table. 1 Calculated capacitance matrix of the wired capacitance.
The integer with parenthesis corresponds to the biased electrode and the others, grounded electrodes in Fig. 3.

1--->	-2.8832156458D-15
2--->	$1.0919360322 \mathrm{D}-15$
3--->	$1.5281434465 \mathrm{D}-20$
4--->	4.4002931882D-16
---->	8.3396603124D-16
6--->	$4.5729467741 \mathrm{D}-16$
1--->	$1.0919360322 \mathrm{D}-15$
2--->	-6.0907773340D-15
3--->	8.1909730688D-16
4--->	$7.97868472490-16$
5--->	$1.5216879896 \mathrm{D}-15$
6--->	8.48329494600-16
1--->	1.5281430711D-20
2--->	8.1909730687D-16
3--->	-3.44068552800-15
4--->	4.1830506854D-16
5--->	$7.90284219090-16$
6--->	$4.4610634233 \mathrm{D}-16$
1--->	$4.4002931882 \mathrm{D}-16$
2--->	$7.9786847249 \mathrm{D}-16$
3--->	$4.1830506854 \mathrm{D}-16$
4--->	-1.7544066129D-15
5--->	$9.8203753007 \mathrm{D}-17$
6--->	$0.00000000000+00$
1--->	$8.3396603124 \mathrm{D}-16$
2--->	1.5216879896D-15
3--->	$7.9028421909 \mathrm{D}-16$
$4-\cdots>$	9.8203753006D-17
5-m->	-3.2705726455D-15
6--->	$2.6430652600 \mathrm{D}-17$
1--->	4.5729467741D-16
2--->	$8.48329494600-16$
3--->	4.46106342330-16
4--->	$0.0000000000 \mathrm{D}+00$
5--->	$2.6430652600 \mathrm{D}-17$
6--->	-1.7781611669D-15

