(4A-4)

ANALYSIS OF PEDESTAL-COLLECTOR TRANSISTORS BY 2-D PROCESS AND DEVICE SIMULATION

Y.Nagase, H.Goto and T.Takada Process Engineering Department, Bipolar Division Fujitsu Limited 1015, Kamikodanaka. Nakahara-ku, Kawasaki 211, Japan Tel.:(Kawasaki)044-754-2403 Fax.:044-752-1874

For an advanced bipolar transistor, the optimization of a base-collector doping profile is now a major concern. A highly doped collector is effective to improve cutoff frequency because it prevents a base stretching effect. However, it also increases C_{CH} and decrease BV_{CHO} . By using a newly developed 2-D process and device simulation system, we have analyzed selectively ion-implanted pedestal-collector transistors to investigate trade-off between device parameters and BV_{CHO} .

We have developed a 2-D process simulator "FIPS2", which includes the same epitaxial autodoping model as that of a 1-D process simulator FIPS [1]. FIPS2 is connected to a 2-D DC/AC bipolar device simulator "BIP2DAN". We have added an avalanche generation model to BIP2DAN in addition to the previously reported physical models [2].

Fig.1 shows the vertical doping profiles of analyzed transistors. The 2-D contour plots of impurity concentration in the collector region are shown in Fig.2. Fig.3 displays the schematic cross section of a transistor under study. Calculated device parameters and BV_{CRO} are listed in Table.1.

The base resistances and the base-collector capacitances show little difference among the pedestal-collector transistor cases. However, $f_{\rm T}$ and $BV_{\rm CRO}$ depend on the pedestal-collector doping profiles and there is a trade-off between these two figures. So far as the cutoff frequency is concerned, the 300-keV implantation is the best case, while it is the worst case for $BV_{\rm CRO}$. Therefore, the pedestal-collector doping profile should be optimized carefully to obtain higher $f_{\rm T}$ and appropriate $BV_{\rm CRO}$.

Acknowledgement

The authers would like to thank K.Suzuki and I.Namura for the codevelopment of FIPS2.

References

- [1] I.Namura et.al., JSAP Spring Conference Tech. Dig. (1987) 908
 29a-G-1 (in Japanese)
- [2] Y.Nagase et.al., NUPAD- II Tech. Dig. (1988) Nupad156

- 40 -

[µm]

the collector.

Tr	lon Implantation	f _{Tm**} [GHz]	۲۳۴, [Δ]	C _c , [fF]	BVcro [V]
1	Reference	16.2	609.7	0.31	5.7
2	150keV 2E12cm-2	22.0	707. 9	0. 58	2. 2
3	300keV 1E13cm-2	28.6	614. 7	0.65	1.8
4	400keV 1E13cm-2	24. 0	600.5	0. 52	2. 7

Table 1 Calculated device parameters.