
(9B-1) 
PARALLEL COMPUTATION METHOD IN DEVICE SIMULATION 

Kazuhiro MOTEGf Shigeijoshi WATANABE^ 

Gunma. University 

1. I n t r o d u c t i o n 

The fast and reliable computation method of linear equations 
is desired to build a device simulator because of its convergence 
in the computation. For the limitation of computation time the 
direct solution method of linear equations is hard to be applied 
to the device simulation. 

Recently, multiprocessor parallel computer were manufactured 
and begun to be used actually in several fields. But, there hap­
pens a lot of problems, e.g., in an algorithm of a numerical anal­
ysis and in an organization of a hardware. One of the most 
important problems to be solved is to implement the algorithm 
of a parallel computation of a sparse matrix. 

Multi Step Diakoptics (MSD)[l][2] extended from Kron's Di-
akoptics by one of authors is a parallel computation technique 
that solves linear equations with the direct method. MSD is 
not a partition method of a matrix but the parallel computation 
method partitioned a linear problem . The algorithm of MSD is 
applicable to a circuit simulation and a device simulation. 

This paper describes the algoritlim of MSD for the device sim­
ulator and shows computational examples executed on a real 
MlMD(Mulliple Instructions stream Multiple Data stream) type 
parallel computer named a Cellar Array Processor(CAP). The 
results show the efficiency of MSD in the device simulation. 

2. Basic S e m i c o n d u c t o r E q u a t i o n s 
VV'e use Selberherr's device models and make the basic semi­

conductor equations - Poisson equation and carrier(electron and 
hole) equations[3]. These are partial differential equations that 
have unknown variables - ^(internal potential), n(e!ectron den­
sity) and p(liole density): 

A^V^(n - p - c) = 0, (1) 
V-{D^Vn - tir^nV^) - GR{ip,n,p) = 0,(2) 
V-{DpVp + fMpp'^i;) - GR{ij,n,p) = 0,(3) 

where C is a net impurely density, Dn(Dp) is an electron(ho!e) 
diffusion coefficients, /inif^^p) is an electron(hole) mobilities, GR 
is a carrier generation rate and A is a normalization factor. 

The decouple method is used to solve these equations. Each 
equation is linearized by Newton-Raphson method, is discretized 
by the finite difference method and are transformed to the system 
of the linear equations. Then, we obtain: 

AS^ = 6, (4) 

where A is a sparse and a band matrix, (5^ is a solution vector 
{(/> = ip, n or p) and 6 is a right hand vector. Here, we define 
an internal iteration as an iteration to transform the nonlinear 
equation to the linear equations, and an external iteration as an 
iteration to compute the system of linear equations. 

3. Diakopt ics 
As described in reference[2], Diakoptics is the branch tearing 

method of a grid structure. The grid structure is made by the 
five points discretization of partial differential equations(l), (2) 
and (3). The structure is partitioned into several subdomains by 
tearing branches connected between subdomains. The connected 
relation between subdomains can be expressed by an incident 
matrix of C. The element C,j of C shows the incident relation 
between a grid and a branch. For example, C,j = 1 if i grid is 
incident to j branch. 

The matrix A of (4) is equivalently expressed by the form of 

A = Ao + CZ-^C\ (5) 

where, Ao is a block diagonal matrix and Z is a diagonal ma­
trix. Each block of Ao is made by the difference equation of the 
subdomain. In the case, the outer grids of the subdomain are 
treated as the boundary condition of the differential equations. 
The values of elements of Z are determined by the off-diagonal 
elements of A (see referencc[2]). 

Diakoptics is applied to solve (4) by the equivalent direct 
method of 

i<i> = Ao-'^b - Ao-^C{Z + C ' / i ; V ) - ' C ' / l o - ' 6 (6) 

The first term on right-hand side expressions in (6) can be solved 
in parallel because of Ao. The most difficult problem of Diakop­
tics is caused by the second term, i.e., the solution of the matrix 
of 

W = Z + C'-AZ^C 
The MSD is a solution method of the problem. 

(7) 
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4. M. S. D.[4] 
The algorithm of MSD is composed of three phases - the first 

phase is the calculation of subdomain problems in parallel, the 
second phase is the data communication between incident clus­
ters, and the third phase is the modification of the solutions of 
subdomains. 

Let us explain in detail. Each processor in the parallel com­
puter executes the task of a subdomains. The task makes three 
linear equations derived from (1),{2) and (3), the incident ma­
trix Cp^T a-nd the diagonal matrix Z^. Where p is the label of 
the subdomain and r is the label of the group of branches inci­
dent to p subdomain. We combine branches that connect two 
subdomains to a group and call it a connector. 
Let us denote Rp is a group composed by connectors incident to 
p subdomain. 

The schedule of parallel computation is done by selection of 
connectors step by step. At every step, at most one connector 
in Rp is selected in any p and the selected connector is removed 
from Rp. In the first step, two siibdomains are connected and 
are made a cluster. The cluster is a group of subdomains. The 
cluster including p subdomain is denoted by Dp. In the following 
steps, two subdomains in the same cluster or in the different 
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connector may be selected in every step. 

2. at every step, only one connector is connected in one clus­

ter. 

The first phase is a subdomain problem- solving phase and 

linear equations 

Ap4>p = bp, ApC/p.r = Cp,r r in Rp (8) 
are solved by p processor that computes the task of p subdomain. 
The second phase is a communication phase. According to the 
schedule, p processor transfers the data of <f>p and Up^r< ^ in Rp 

to all of the processors that compute tasks of subdomains in Sp. 

The third phase is a modification phase. When the p processor 
receives the data at every step, the following calculations are 
done in the this phase. 

4>p ^ <Pp- Up,,W:'Y.C)^,4>j 
1 

(9) 

Up,r ^ Up,r - Up.kW^'J^'^ikUf.r T in Rp{lO) 

J 

where, k is a connector connected to the p subdomain and / 
is two domains incident to k connector. The phase 2 and 3 are 
repeated until final step of the schedule. 

D. Resu l t s of Computa t Jon[5] 
Let ns denote the computation time of each phase is T,ub, 

Tcom and Tmod, respectively. The total computation time is 

defined as the sum of T,uj,, T( and T„ .od-
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Fig. 1 Computation Time on CSS. 
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At first, we use a quasi-parallel simulator CSS(CAP Software 
Simulator). CSS can work on a workstation and simulate the 
parallel computation by assigning all tasks of the parallel compu­
tation into processes of the workstation. Therefore, it is possible 
to measure the computation time of any task on CSS. Figure 1 
shows the relation between the number of the discretized grids 
and the total computation time. The parameter 2 X 2 " in 
Figure 1 denotes the number of the subdomains that are made 
by tearing in T^ parts on X-axis and in 2 " parts on Y-axis. 
The figure shows that the effectiveness of MSD is increased in 
accordance with increasing the number of grids. 

Next, we show the result of parallel computation executed on 
CAP[6]. The relation between the number of processors and 
grids is shown in Figure 2. The CAP is organized by a worksta­
tion constructed 32bits CPU, called host, and 64(= 8X8) pro­
cessors constructed IGbits CPU, called cell, that are arranged in 
a grid shape. All cells are connected to the host by a common 
bus. The common bus is the data communication bus connect­
ing all cells. Because CAP has a limitation of the memory size, 
the number of grids in any subdomain isn't able to be out of 64 
grids in a diode model. 

The results of Figure 2 doesn't show the efficiency in case of 
small size problems. Because of a few discretized grids, the sum 
of the second phase time Tcom and '•l*^ ^'"'''^ P '^^^ '•'" '̂̂  T^oi is 
greater than the first phase time T,^h ' " ''^^ algorithm of MSD. 
However, if total number of grids is over 2^, the result on CSS 
shows the efficiency of MSD. Therefore, we conclude that the 
efficiency of MSD increases if the number of the grids is over 
29[5]. 
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Fig. 2 Computation Time on CAP. 
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