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To apply the Boltzmann transport equation (BTE) to ion 

implantation, the target material should be divided into a number 

of small segments Az as shown in Fig.l. At each depth, the 

number of particles with energy E. and traveling angle 0 . is 

given by a momentum distribution matrix F. . (i = l'-'i , 

i=l* '-i ). The number of particles transferred to all final J Jmax c 

states of equal energy but different angles is given by 

F. . N AZ \T2 
X A F(ij - i'j') = — ^ \ do

n(T) 1̂) 
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where N is the number density of the target material, T, and T~ 

are the minimum and maximum energy transfers which take a 

particle from a state of energy E. to one of states of energy E., 

( < E-) and do (T) is the nuclear differential scattering cross 
i n ^ 

section. 

Eq.(1) is valid only if travel distance of particles, 

Az/cos9 . , is small enough so that total scattering probabilities 

for a particular group of particles does not exceed unity. 

Allowable step size satisfying the condition described above 

becomes very small for low energy ion implantation. The step 

size Az should be a few angstrom for arsenic ion implantation at 

50 keV. In order to keep the travel distance of scattered 

particles in reasonable range, main- and sub- meshes shown in 

Fig.2 are used at each depth in our new model. A momentum 

distribution matrix F.. is assigned to each mesh. The particles 

scattered at depth z are transferred to either the main mesh at 

the depth, z + Az , or the sub-mesh at the same depth, z. 

Back scattered particles are considered to be stopped at the 

depth, z, and removed from the mesh because particles scattered 
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toward t h e sample s u r f a c e i n v o l v e l a r g e f r a c t i o n a l e n e r g y l o s s . 

A f t e r a l l of t h e p a r t i c l e s i n t h e main mesh a r e t r a n s f e r r e d , t h e 

r o l e of t h e main mesh and t h e sub-mesh a t t h e same d e p t h a r e 

exchanged and t h e c a l c u l a t i o n i s r e p e a t e d . 

The new method d e s c r i b e d above make i t p o s s i b l e t o use q u i t e 

l a r g e s t e p s i z e , Az, compared t o t h e model r e p o r t e d so f a r 

w i t h o u t l o s i n g a c c u r a c y . 

Fig. 1 Schematic i l l u s t r a t i o n of a target material , 

m'ain mesh sub-mesh 
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Fig. 2 Schematic i l l u s t r a t i o n of our new model. 


