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Abstract— We construct a kinetic Monte Carlo (kMC) 
model to simulate the impact of stochastic multi-hotspot 
chalcogen-mediated switching on the I-V characteristics 
and associated variability in monolayer MoS2 RRAMs. 
The designed physics-informed rate equations capture 
the abrupt and gradual (with electric field) SET and 
RESET, respectively and enable the extraction of key 
material parameters. The calibrated model yields an 
excellent fit with experimental I-V and replicates the large 
cycle-to-cycle (C2C) variability (coefficient of variance, 
σ/μ > 0.5). Next, we examine the controlled annihilation of 
hotspots in the RESET process, using DC and pulsed 
biasing schemes - thereby tuning the statistical 
parameters of HRS variability at runtime. The change in 
the mean (μ ~ 30 – 600 MΩ) and coefficient of variance 
(σ/μ ~ 1 - 4) in HRS variability obtained by tuning the stop 
voltage in the RESET cycle (Vstop) is limited. However, the 
pulsed biasing scheme allows a much larger control over 
(μ ~103 to 109 Ω) and (σ/μ ~ 10-2 to 101), by adjusting the 
pulse height (Vp), duration (tpw), and number of pulses 
(Np). Finally, the promise of these devices as tunable 
stochastic sources is illustrated using a n:n (n=8-256) 
challenge response pair (CRP) based physically 
unclonable function (PUF). These PUFs demonstrate 
state-of-the-art inter- and intra-Hamming distance, and 
the degree of stochasticity is validated using Shannon 
entropy and NIST SP 800-22 tests.  
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I. INTRODUCTION 
The development of area-scalable, low-power solid-state 
devices for true random number generation is crucial for 
hardware realization of security, cryptography, and 
authentication applications. Presently, the stochastic sources 
used in true random number generators (TRNGs) rely on 
inherent physical randomness introduced during 
manufacturing, such as transistor mismatches, process 
variations, and structural defects. These characteristics of 
these devices cannot be altered post-fabrication and offer 
limited variability, which can lead to biased or correlated 
random numbers, thereby compromising the unpredictability 
of the generated random number bitstream [1]. Therefore, the 

development of devices that exhibit large and run-time 
tunable cycle-to-cycle (C2C) variability would open new 
vistas.   

 
Fig.1 Device and simulation methodology (a) Monolayer 
MoS2 RRAM device under DC ramp and pulse biasing (b) 
Kinetic Monte Carlo (kMC) simulation methodology used in 
this work illustrating transitions between pristine, SET and 
RESET states and associated rate equations.  
 
Two-terminal solid-state devices based on a metal–insulator–
metal (MIM) structure, commonly known as resistive 
random-access memory (RRAM), exhibit switching 
mechanism that relies on the formation and rupture of 
conductive filaments between two metal electrodes. 
Generally, the variability in such systems arises from the size 
and shape of the filaments created in successive operational 
cycles [2]. In conventional RRAM, the insulating layer is 
typically an oxide material. In these devices, the formation 
and rupture of one or a few conductive filament(s), enable the 
device’s resistive switching mechanism. This limits the range 
and tunability of the statistical distribution parameters of 

(b)

Au

Au

Vapp

∆t ∆V
V a

pp

time

(a) Ramp

Vstop
RR =∆V/∆t

tpw

Vp

time

(b) Pulsing

V a
pp

tpw

time

(c) Pulse train

V a
pp Vp Np

(a)

(b)



 

SISPAD 2025 – https://sispad2025.inviteo.fr/ 

variability. In RRAMs, where a 2D material is sandwiched 
between two metal electrodes, the switching mechanism is 
inherently different from that in oxide-based RRAMs. 
Resistive switching, for example, in monolayer MoS2-based 
RRAMs is mediated by numerous sulfur vacancies (~1 
million defects in a 2×2 µm² area) that are present on its basal 
plane [3]. Under an applied bias, these defects can transform 
into conductive hotspots. Since there are a large number of 
such filaments that can independently ‘turn on/off’ in 
successive SET/RESET cycles – the range of variability that 
these devices exhibit is also sizeable [4].  

In this work, we simulate the sulfur-vacancy-mediated 
stochastic formation (SET) and annihilation (RESET) of 
hotspots in monolayer MoS2 RRAMs. This stochastic 
switching mechanism leads to variability in the I–V 
characteristics. First, by employing physics-informed rate 
equations in our kinetic Monte Carlo (kMC) model, we 
accurately capture the abrupt SET and gradual RESET 
behaviour in RRAM, achieving excellent calibration with 
experimental I–V data. This enables the extraction of key 
material parameters for further simulations. Next, we use the 
calibrated model to generate cycle-to-cycle (C2C) variability 
in the I–V characteristics over consecutive SET and RESET 
cycles. The statistical parameters mean(μ) and coefficient of 
variance(σ/μ) of variability in the gradual RESET process can 
be tuned over several orders of magnitude by varying the stop 
voltage (Vstop) for DC ramp biasing, and the pulse amplitude 
(Vp), duration (tpw), and number of pulses (Np) for single-
pulse and pulse train biasing. Finally, we demonstrate the 
implementation of a physically unclonable function (PUF) 
using our devices. 

II. DEVICE SCHEMATIC AND SIMULATION     
METHODOLOGY 

The RRAM under consideration is a monolayer of MoS2 with 
S-vacancies (marked with red circles) sandwiched between 
two inert (Au) electrodes [Fig.1(a)]. The device is subjected 
to three biasing schemes: DC ramp (blue) and single pulse, 
pulse train (red), as illustrated in [Fig.1(a)]. We employ the 
kinetic Monte Carlo (kMC) methodology to simulate the 
device characteristics and the associated C2C variability 
arising due to stochastic formation (SET) and annihilation 
(RESET) of conductive hotspots. In the kMC model, we 
employ a physics-informed rate equation that describes 
abrupt SET and gradual RESET as detailed in [Fig.1(b)] [4].  
 
During the SET process, as the applied voltage (Vₐₚₚ) 
increases, the corresponding rise in the electric field (E) 
exponentially enhances the probability of overcoming the 
formation barrier (Eb,set), leading to the abrupt formation of 
hotspots at a critical electric field. This causes a sharp 
reduction in the resistance, and the device switches from the 
high-resistance state (HRS) to the low-resistance state (LRS) 

[Fig. 2(a)]. During the RESET process, the device transitions 
from the LRS to HRS. As the applied bias voltage (Vapp) 
increases, it causes a rise in current (I), leading to an increase 
in device temperature due to Joule heating. To capture this 
effect, the RESET rate equation is modified to include a Joule 
heating term γreset (Vapp·I)β. The increased temperature lowers 
the energy barrier for hotspot annihilation (Eb,reset) and 
gradually assists in the annihilation of conductive hotspots, 
driving the device back into the high-resistance state (HRS). 
The denominator of the exponent in both rate equations 
captures the increase in current (I) with applied voltage (Vₐₚₚ), 
which leads to a rise in lattice temperature. This temperature 
increase is modeled using the net thermal resistance (Rₜₕ), the 
value of Rth decreases as the number of hotspots increases. 
The parameters ϑset and ϑreset represent the attempt frequencies 
for a sulfur vacancy transforming into a conductive hotspot 
(SET) and for the annihilation of hotspot (RESET), 
respectively. The material parameters used in the rate 
equations mentioned in [Fig.1(b)] are extracted by calibration 
with experimental data as shown in [Fig. 2(a)][4].  

 
Fig.2 Calibration, C2C variability, and tunability of HRS 
variability statistics under DC ramp biasing. (a) Calibration 
with experimental data and C2C variability in the I-V 
characteristics for both HRS and LRS. (b) CDF (%) 
demonstrating tunability of HRS statistics with DC biasing by 
varying Vstop. (c) Statistical parameters mean (μ), standard 
deviation (σ), and coefficient of variance (σ/μ) for fixed Vstop. 

III. DEVICE CHARACTERISTICS AND VARIABILITY 

First, we evaluate the device characteristics with DC biasing. 
[Fig.2(a)] demonstrates an excellent match of our simulations 
(black line) with the experimental data (red open 
symbols)[4,5]. Furthermore, 10k SET and RESET cycles 
generated using the calibrated model are shown using silver 
lines [Fig.2(a)], where, despite a large distribution in HRS and 
LRS resistances, a sizeable memory window (102) is evident. 
The C2C variability in the device is due to the unpredictability 
of the number and location of hotspots at the end of each 
set/reset cycle. Next, we leverage the gradual RESET 
characteristics of the device to tune the variability statistics by 
varying the maximum biasing voltage during the RESET 
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process, also referred to as stop voltage (Vstop). The 
cumulative distribution function (CDF%) for each Vstop, 
ranging from −1.6 V to −2.0 V in 50 mV increments, is shown 
in Fig. 2(b). The CDF% of HRS shifts toward higher 
resistance values, indicating an increase in the mean (μ) of the 
distribution with increasing Vstop. This is because, due to the 
gradual RESET process, the number of hotspots that get 
annihilated on an average increase with Vstop. Also, we 
observe that while the absolute value of the standard deviation 
increases with Vstop, the normalized variability or the 
coefficient of variance (σ/μ), decreases with Vstop. This is 
because with higher Vstop nearly all the (finite) hotspots 
available for conduction annihilate, which caps/saturates the 
normalized variability of the HRS state.  

 
Fig.3 Variability statistics with pulse and pulse train biasing 
schemes. (a) Resistance vs. time illustrating C2C HRS 
variability under pulse biasing with fixed pulse height (Vp) 
and duration (tpw). The CDF% curves of HRS under pulse 
biasing by (b) varying tpw (fixed VP ), (c) varying VP (fixed tpw 
), and (d) varying number of pulses Np (fixed VP & tpw).  
 
Second, we explore the pulsed biasing scheme to modulate the 
C2C variability in HRS resistance. The evolution of the HRS 
as a function of time when the device is subjected to a pulse 
height (Vp) of 2.25 V and a pulse duration (tpw) of 50 μs over 
10k cycles of operation is shown in [Fig 3(a)]. A resistance 
range spanning ~ 5 orders of magnitude (104 to 109 Ω) is 
observed for 10k cycles, indicating significantly higher 
variability compared to DC biasing conditions. The statistical 
parameters associated with this HRS variability can be further 
tuned using three scenarios (1) varying tpw (with fixed Vp = 
2.25 V) [Fig.3(b)], (2) varying Vp (with fixed tpw = 5 µs) 
[Fig.3(c)], and (3) varying the number of pulses, Np ( for fixed 
Vp = 2.25 V, tpw = 5 ns) [Fig.3(d)] as demonstrated in CDF 
(%) plots. With increasing pulse parameter values (Vp, tpw, 
Np), the CDF (%) curves shift toward higher resistance values. 
As a result, the mean and the coefficient of variation (CV) of 
the HRS initially increase. For larger pulse parameters, the 
mean begins to saturate, and the CV decreases, as shown in 
[Fig.4(a-d)]. This behaviour is similar to that seen in DC 
biasing conditions, where with higher Vp, tpw and/or Np, nearly 
all the (finite) number of hotspots are annihilated, which 
drives the system toward more repeated resistance states. 

[Fig.4(a–d)] demonstrates by varying pulse parameters the 
mean (μ) and the coefficient of variance (σ/μ) can be tuned 
over six (103 to 109) and three (10-2 to 101) orders of 
magnitude, respectively. As evident in Fig 4(b,d), the 
normalised variability (σ/μ), has an optimal Vp which yields 
the maximum variability for fixed tpw  and Np, below which the 
majority of the hotspots are active (not annihilated) and above 
which most hotspots tend to get annihilated. The value of this 
optimal Vp is inversely correlated to the magnitude of fixed tpw 

and Np as evident in Fig. 4 (b,d)]. These plots predict the 
optimal operating conditions to maximize/minimize 
variability for appropriate applications. 

 
Fig.4 Tunability of HRS variability statistics with pulse 
biasing. Statistical parameters of HRS resistance:(a) Mean 
and (b) coefficient of variance by varying Vp and tpw (fixed 
Np), and (c) Mean and (d) coefficient of variance by varying 
Vp and Np (fixed tpw). 

IV. MOS2 RRAM – BASED PHYSICALLY 
UNCLONABLE FUNCTIONS (PUFS) 

 
Fig.5 (a) PUF architecture for n:n CRP using two 1T-1R 
MoS₂ RRAM arrays; (b) Resistance distribution across the 
array cells. 
 
Physically unclonable functions (PUFs) rely on devices 
exhibiting inherent randomness in their characteristics. In this 
context, our MoS2-based RRAM devices offer a unique 
solution with large statistical control with biasing parameters. 
To evaluate the same, we construct a PUF architecture [Fig. 
5(a)] with n:n challenge response pairs (CRPs). The resistance 
distribution across the memory array, where all the cells are 
initially set in the HRS is illustrated in Fig. 5(b). A common 
challenge is applied to the two arrays initialized with HRS 
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resistances, and the corresponding memory cells are selected. 
The resistance values of these selected cells are then 
compared. If the resistance of a cell in Memory Array 1 is 
higher than that of the corresponding cell in Memory Array 2, 
the output bit is assigned a digital ‘1’; otherwise, it is assigned 
a digital ‘0’. The use of two arrays increases the 
unpredictability of the PUF response, thereby enhancing the 
overall security. 

 
Fig. 6 (a) Inter- and intra-Hamming distances tend towards 
idealized values (µ = 50% and small σ) for pulsed biasing 
with increasing CRPs. (b) Uniqueness (inter-Hamming 
distance) and diffusivity (intra-Hamming distance) for 
256:256 CRPs. (c) Unpredictability of response measured 
using Shannon entropy, inset: Spectral patterns of all 64:64 
CRPs (on 221 pairs), showing no visual correlation 
(unpredictable) 
 
First, we evaluate the inter and intra-Hamming distance and 
verify that the PUF characteristics tend to the idealized values 
(µ ~ 50% and smaller σ) with increasing CRPs [Fig.6(a)]. 
Next, we evaluate the uniqueness and diffusivity for PUFs, by 
extracting the inter- and intra-Hamming distance [Fig.6(b)] 
(µ~50% and σ~3% for 256:256 CRP). These results predict 
enhanced performance compared to experimental results for 
similar response bits [6,7]. Finally, we evaluate the 
unpredictability of the PUF using Shannon entropy (Vp = 2.25 
V, tpw = 50 µs) [Fig. 6(c)]. As the number of response bits 
increases, the entropy value moves closer to the ideal value of 
100%, indicating a highly random and unpredictable response 
across CRPs. To further support this, the inset of [Fig. 6(c)] 
shows the spectral map of 256:256. The absence of significant 
visual patterns illustrates that the responses are inherently 
random and uncorrelated. After generating the PUF response 
matrix, the randomness of the output bits was evaluated using 
the NIST SP 800-22 statistical test suite. A P-value represents 
the probability that a truly random sequence would produce a 
result less random than the tested sequence.  According to the 
criteria, a P-value greater than 0.01 indicates that the test has 
passed. The proposed PUF architecture successfully passed all 
16 tests [Table 1], confirming that the generated response 
exhibits high randomness [8].  
 

Tests P-Value Result 
Frequency 0.534146 Pass 

Block Frequency 0.534146 Pass 
Cumulative Sums (F) 0.739918 Pass 
Cumulative Sums (R) 0.739918 Pass 

Runs 0.350485 Pass 
Longest Run 0.534146 Pass 

Rank 0.991468 Pass 
FFT 0.739918 Pass 

Overlapping Template 0.350485 Pass 
Universal 0.534146 Pass 

Approximate Entropy 0.066882 Pass 
Serial 0.516869 Pass 

Linear Complexity 0.008879 Pass 
Non-overlapping Template 0.458603 Pass 

Random Excursions 0.457939 Pass 
Random Excursions Variant 0.626478 Pass 

Table 1: Evaluation of PUF Output Randomness Using 
NIST SP 800-22 Statistical Tests 

 
V. CONCLUSIONS 

We demonstrate MoS2-based RRAMs as promising 
candidates for hardware security by leveraging stochastic 
switching and tunable variability. Our kMC simulations, 
calibrated with experimental data, show large control over 
HRS resistance under DC and pulsed biasing. By varying 
pulse parameters (Vp, tpw and Np), the statistical parameters 
of the HRS distribution mean and coefficient of variance 
tuned over six (103 to 109 Ω) and three (10-2 to 101) orders of 
magnitude, respectively. This enables a robust PUF design, 
validated through inter/intra-Hamming distance analysis, 
spectral mapping, and successful completion of the NIST SP 
800-22 statistical test suite. 
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