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Abstract—This paper investigates four discretization schemes–
EAFE, FVSG, CVFEM-SG, and EFTFE–for solving the quantum
drift-diffusion (QDD) model formulated using quasi-Fermi levels.
A series of simulations on a 10 nm gate-all-around (GAA) transis-
tor are conducted across various mesh types, including structured
and non-Delaunay grids. The methods are evaluated in terms
of accuracy, numerical stability, and computational efficiency.
Among them, the EAFE method consistently demonstrates high
accuracy and robust convergence behavior, exhibiting strong
mesh-independence and superior overall performance.

Index Terms—Quantum drift-diffusion model, Quasi-Fermi
scheme, Discretization methods, Finite element method, Finite
volume method, GAAFET

I. INTRODUCTION

The continued downscaling of semiconductor devices has
significantly amplified the influence of process-induced mor-
phological variations on device performance. Meshes gener-
ated through process emulation are typically non-Delaunay
[1], which presents significant challenges to the stability
and accuracy of Voronoi-based finite volume device simula-
tors. Over the years, numerous discretization schemes have
been proposed, many originating from the classical Schar-
fetter–Gummel (SG) method. However, their effectiveness in
addressing the challenges posed by modern device geometries
and quantum-scale effects remains an open question.

Among quantum-corrected transport models, the quantum
drift-diffusion (QDD) model, also known as the density-
gradient model, remains one of the most computationally effi-
cient approaches for capturing quantum confinement effects. It
continues to see widespread use in both academic research and
industrial simulation workflows. While various discretization
methods for the conventional drift-diffusion (DD) model have
been studied extensively [2], [3], the QDD model introduces
fundamentally different mathematical properties. To date, sys-
tematic comparisons of discretization schemes specifically
tailored for the QDD model remain scarce in the literature.

In this work, we examine four representative discretization
approaches: the edge-averaged finite element (EAFE) method
[4], the finite volume Scharfetter–Gummel (FVSG) method,
the control volume finite element method with multidimen-
sional Scharfetter–Gummel upwinding (CVFEM-SG) [5], and
the exponentially fitted tetrahedral finite element (EFTFE)

method [6]. These methods are applied to the QDD model for-
mulated using quasi-Fermi levels, a formulation that has shown
particular advantages in simulating cryogenic, wide-bandgap,
and high-voltage devices [7]. We compare the methods in
terms of accuracy, numerical stability, and computational effi-
ciency through simulations of a gate-all-around (GAA) device
using various mesh configurations.

II. METHODS

A. Physical Model

The QDD model, utilizing the exponential transformation
of carrier density variables n/ni = e2ψn and p/ni = e2ψp ,
can be formulated as follows [8]:

−∇ · (ϵ∇ϕ) = q(nie
2ψp − nie

2ψn +D), (1)

∇ · Jn = R, Jn = −µnnie2ψn∇ϕn, (2)

∇ · Jp = −R, Jp = −µpnie2ψp∇ϕp (3)

∇ · (2bn∇eψn) = eψn(ϕn − ϕ+ 2Vthψn), (4)

−∇ · (2bp∇eψp) = eψp(ϕp − ϕ− 2Vthψp), (5)

where ϕ is the electrostatic potential, ϕn, ϕp are the electron
and hole quasi-Fermi potentials, Jn, Jp are the current densi-
ties for electrons and holes, q is the electronic charge, ϵ is the
dielectric constant of the material, D and R denote the doping
profile and net recombination rate, and bn = γnℏ2
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are the density-gradient coefficients.

B. Discretization Schemes

Equations (1) and (4) - (5) are discretized using the standard
Galerkin finite element method (FEM) and the interpolated-
exponential finite element (IEFE) scheme, as detailed in [8].
For the carrier continuity equations (2) - (3), we refer the reader
to [8] for the complete formulation of the EAFE method.
Different from the FVSG method, which approximates the
current density flux Jn ·n along mesh edges as a constant, the
EAFE method approximates the vector field Jn as a constant
within each tetrahedral element.

The CVFEM-SG approach [5] approximates Jn/p in the
lowest-order Nédélec edge element space PN (Ω) via an edge



element lifting of the 1D SG edge currents. For electrons, the
current density is given by

Jn ≈
∑

E∈E(Ω)

|E|JijW⃗ ij ,

where W⃗ ij is the basis of PN (Ω) on edge E : AE
i → AE

j

and Jij is the SG edge current densities

Jij = −µn/|E|
[
e2ψniB(∆)ϕni

− e2ψnjB(−∆)ϕnj

]
,

∆ = 2ψni
− 2ψnj

, B(x) = x/(ex − 1).

For the EFTFE method [6], the weak formulation of (2) is
written as:

−(Jn,∇v) = (
√
µne

ψn∇ϕn,
√
µne

ψn∇v) = (R, v).

This leads to a system using exponential basis functions
defined over each tetrahedron. For the basis function b1(x) and
auxiliary flux p1(x) associated with vertex A1, the relation

p1(x) · lm√
µn

= B(σm)eψn(x)b1(x)−B(−σm)eψn(Am)δ1m,

holds for m = 1, 2, 3, 4, where lm := x−Am, σm := ∇ψn ·
lm, and δ1m is the Kronecker delta.

C. Nonlinear Solvers and Linear System Solution

To handle the nonlinear coupling in the QDD equations, a
monolithic Newton solver is employed for the EAFE, FVSG,
and CVFEM-SG discretizations. For EFTFE, the Gummel
iteration is used due to the complexity of forming the Jacobian.
At each nonlinear step, the resulting linear system is solved
using either a parallel direct sparse solver (MUMPS) or an
algebraic multigrid (AMG)-preconditioned flexible GMRES
(FGMRES) method.

III. RESULTS

To evaluate the performance of the EAFE, FVSG, CVFEM-
SG, and EFTFE discretization schemes applied to the QDD
model, we consider a benchmark simulation of an n-type
GAAFET with a gate length of 10 nm. The source and drain
regions are defined by two 5×5 nm contacts, as illustrated in
Fig. 1. The accuracy of the simulation framework has been
validated in previous work [8]. Four finite element meshes are
employed for comparison (see Fig. 1):

• (a) mesh Good: all tetrahedral elements have dihedral
angles ≤ π/2;

• (b) mesh S: generated using a commercial mesh genera-
tor;

• (c) mesh Unstructured: an unstructured tetrahedral mesh
generated by TetGen [9];

• (d) mesh Non-Delaunay: obtained by applying three suc-
cessive longest-edge bisections starting from a structured
mesh configuration similar to that in Fig. 1(b).

For reference, Fig. 2(a) and 2(b) show the tetrahedral subdi-
visions of a unit cube corresponding to mesh Good and mesh
S, respectively.

Fig. 1. Device structure and four types of tetrahedral meshes used in the
GAAFET simulation.

Fig. 2. Tetrahedral subdivision of a unit cube corresponding to: (a) the mesh
with dihedral angle ≤ π/2 (as in Fig. 1(a)). (b) the mesh generated by a
commercial tool (as in Fig. 1(b)).

Fig. 3. (a) Transfer characteristics (ID-VG) computed using the EAFE
scheme under mesh refinement levels from 0 to 4. The solution at refine level
4 (21,872,640 tetrahedra) is taken as the reference. (b) Local magnification
at VG = 1.4 ∼ 1.5V, showing convergence of ID with refinement.



Fig. 4. Transfer characteristics (ID-VG) obtained using four discretization
schemes (EAFE, FVSG, CVFEM-SG, EFTFE) on four mesh types. The EAFE
method consistently delivers the highest accuracy and stability across all
meshes. Simulations on mesh S exhibit the least sensitivity to discretization
artifacts and geometric irregularities.

Fig. 3(a) presents the ID-VG characteristics obtained with
the EAFE scheme, as the mesh is refined from level 0 (5,340
tetrahedra) to level 4 (21,872,640 tetrahedra) under a drain bias
VD = 0.05V. The result from refinement level 4 is used as a
reference solution. As seen in the magnified view in Fig. 3(b),
the drain current converges with mesh refinement, demonstrat-
ing the accuracy and mesh independence of the numerical
solution. Fig. 4 compares the ID-VG curves obtained from all
four discretization methods across the four mesh types. Among
them, EAFE consistently produces the lowest relative error and
demonstrates strong robustness across different mesh qualities.
Moreover, simulations based on the commercial mesh (mesh
S) exhibit the least sensitivity to discretization and geometric
irregularities.

To further analyze the stability of the discretization schemes
and the efficiency of the associated linear solvers, Fig. 5
displays the maximum gate and drain bias values at which each
method successfully converges. Fig. 6 presents the average
number of FGMRES iterations per nonlinear step as the drain
bias increases, with VG = 1.0V. The EAFE method not
only achieves convergence at higher bias voltages across all
mesh types, but also maintains stable iteration counts as the
bias increases. To gain deeper insight into the impact of
discretization, we analyze the spatial distribution of the quasi-
Fermi potential. A 2D cross-sectional slice, perpendicular to
the channel and located at the device midpoint, is extracted
at VG = 1.5V and VD = 0.05V. Fig. 7 - Fig. 10 show the
corresponding quasi-Fermi potential distributions computed
using the four methods across the four mesh types. On
mesh Good, the potential remains nearly uniform across the
slice, reflecting high numerical fidelity. On the other meshes,
however, significant deviations appear, especially for CVFEM-
SG and EFTFE. In contrast, the EAFE and FVSG methods
yield smoother and more physically consistent distributions.

Fig. 5. Maximum gate and drain bias values for which convergence was
achieved under each discretization scheme and mesh type. The results reflect
the robustness and stability of each method, with EAFE demonstrating the
most reliable convergence behavior.

Fig. 6. Average number of FGMRES iterations per nonlinear step under
increasing drain bias at VG = 1.0V. EAFE maintains a consistently low
iteration count across all mesh configurations.

Fig. 7. Electron quasi-Fermi potential along a central cross-sectional slice of
the GAA channel at VG = 1.5V, VD = 0.05V, using different discretization
schemes on Mesh Good.



Fig. 8. Electron quasi-Fermi potential on the same slice and bias condition
as in Fig. 7, simulated on mesh S.

Fig. 9. Electron quasi-Fermi potential on the same slice and bias condition
as in Fig. 7, simulated on mesh Unstructured.

Fig. 10. Electron quasi-Fermi potential on the same slice and bias condition
as in Fig. 7, simulated on mesh Non-Delaunay.

IV. CONCLUSION

We have systematically compared four representative dis-
cretization methods for the quasi-Fermi-level-based QDD
model on various tetrahedral mesh types, including structured,
unstructured, and non-Delaunay grids. Among them, EAFE
shows the best overall performance in terms of accuracy,
convergence stability, and robustness to mesh irregularity.
These results highlight EAFE’s suitability for advanced device
simulations where process-induced geometric variations are
significant. The findings also suggest that careful selection
of discretization schemes is essential for ensuring reliable
simulation of quantum-confined devices.
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[7] Z. Stanojević, J. M. González-Medina, F. Schanovsky, and M. Karner,
“Quasi-Fermi-based charge transport scheme for device simulation in
cryogenic, wide bandgap, and high-voltage applications,” IEEE Trans-
actions on Electron Devices, vol. 70, no. 2, pp. 708–713, 2023.

[8] P. Mu, T. Cui, L. Xu, K. Luo, Z. Li, and Z. Wu, “A finite element
framework for solving the density-gradient model,” in 2024 International
Conference on Simulation of Semiconductor Processes and Devices
(SISPAD), 2024, pp. 1–4.

[9] H. Si, “Tetgen, a Delaunay-based quality tetrahedral mesh generator,”
ACM Transactions on Mathematical Software, vol. 41, no. 2, 2015.


