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Abstract—Precise etching control, balancing etching rate (ER)
and surface roughness (Ra), is critical yet challenging in advanced
semiconductor manufacturing. Traditional co-optimization re-
lies heavily on costly and time-consuming trial-and-error ex-
periments. This study introduces a Physics-Informed Bayesian
Optimization (PIBO) framework to efficiently optimize ER and
Ra during silicon plasma etching. PIBO overcomes extrapola-
tion limitations of conventional Gaussian Process Regression by
integrating physical prior knowledge — specifically, qualitative
relationships of source power (PW) and pressure (P) to the
process metrics. It utilizes a 3D etching profile model to gen-
erate data across parameter spaces. The framework employs
an iterative feedback loop: starting from limited experimental
data, it recommends new parameter sets for evaluation; these
results then refine the model and subsequent recommendations.
This approach systematically minimizes the number of required
experiments. By embedding engineering understanding of the PW
and P effects and leveraging computational modeling, the PIBO
framework bridges the gap between physical intuition and data-
driven optimization. It significantly reduces reliance on extensive
trial-and-error, enabling faster and more efficient acquisition of
optimal etching parameters (PW, P) that achieve the desired
ER/Ra balance, ultimately accelerating process development.

Index Terms—Etch rate, Surface roughness, Physics-informed
bayesian optimization, Process parameters.

I. INTRODUCTION

Precisely controlled etching is essential in advanced node
semiconductor manufacturing, where key metrics such as
etching rate (ER) and surface roughness (Ra) are critical
for process quality and device performance. Fabs face a
fundamental trade-off in achieving high ER while maintaining
Ra within certain limits. Co-optimization is needed and tradi-
tionally relies heavily on expertise and extensive trial-and-error
experiments, leading to long turnover, long design cycles, and
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high cost [1]. Thus, developing predictive methods based on
limited experimental datasets is an urgent industry need.

Bayesian Optimization (BO), efficient in sampling and
global optimization, employs historical data to recommend
optimal parameters [2]. The physics-informed BO (PIBO)
framework addresses conventional Gaussian Process Regres-
sion’s extrapolation limits by integrating physical priors [3],
offering new pathways for complex etching optimization.

In this study, we propose a PIBO framework for co-
optimization of ER and Ra during plasma etching of silicon.
The framework incorporates qualitative relationships of both
source power (PW) and pressure (P) to process metric as prior
knowledge, and uses a 3D etching profile model to generate
data across the parameter spaces. Iterative feedback refines
the recommendation mechanism, enabling efficient acquisition
of optimized parameters with minimal experiments. This ap-
proach bridges engineering intuition and data-driven modeling,
reducing reliance on trial-and-error while enhancing process
optimization and development efficiency.

II. PIBO FRAMEWORK

We applied the PIBO framework to optimize the ER and
Ra of a planar Si substrate during Cl-based plasma etching.
As shown in Fig. 1, the PIBO framework operates through
four iterative stages to identify parameter combinations that
satisfy the target specification: a) Perform 3D etching profile
simulation using recommended parameters from PIBO; b)
Analyze simulated data and calculate ER and Ra; c¢) Update
the dataset correlating process parameters with target metrics;
d) Execute PIBO algorithm to identify improved process
condition for the next iteration.
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Etch Etch metrics Process conditions
number | eprnm/min]|  SR[nm] | P [mTorr] | PW [w]
N1 59 5.9 35 370
N2 80 5.3 40 500
N9 99 4.3 42.7 627

Fig. 1. PIBO framework for co-optimization of ER and Ra. (a) Data acquisition by 3D etching profile simulation, (b) ER & Ra calculation, (c) Etch metrics

for 9 runs (N1-N9), (d) Select the next process condition by PIBO.

A. Data acquisition by 3D etching profile simulation

We simulate the etching process of planar Si substrate dur-
ing Cl-based plasma using a 3D etch profile simulation model
based on Monte Carlo and voxel methods. This model includes
the incident distribution of particles, Monte Carlo ray tracing,
and profile evolution based on the voxel method. As illustrated
in Fig. 1(a), we divided the 3D structure into a grid of xxyxz
voxels, defining a simulation window of lengthxwidthxheight
in nm3. We assign different number to represent the presence
of different types of materials in each voxel. The model also
includes the relationship between the process conditions and
the properties of incident particles. Particles are emitted from
the plasma region at fixed positions and angles derived from
the specified process parameters. They travel in straight lines
until they reach the substrate surface and interact with it.
We incorporate physically reasonable reaction probabilities
into the model based on prior literature [4]-[6]. As particles
strike and react with the surface, affected substrate voxels are
gradually converted to vacuum, simulating material removal.
Thus, this model provides real-time simulation of the etching
profile. The model mainly considers two kinds of incident
particles: isotropic incident particles and anisotropic incident
particles. The incidence angle distribution of isotropic incident

particles follows the cosine distribution. The incidence angle
distribution of anisotropic incident particles obeys Gaussian
distribution and mean p represents the center incident angle,
which is normal to the substrate, while standard deviation o
represents the degree of the incident angle dispersion around
the normal direction. In this study, p is equal to 0 and o
is equal to 0.035, this corresponds to 99.7% of anisotropic
incident particles within £5.73°. The influence of particle
incident energy is ignored in this study.

B. ER & Ra calculation and dataset update

Following the etching simulation, the etching model can
automatically calculate the ER and Ra through global statistics,
and update the dataset for PIBO. The ER is calculated as
the average etching depth, while Ra is evaluated using the
arithmetic average deviation metric shown in Fig. 1(b). These
values are then used to update the dataset (Fig. 1(c)), which
links process parameters with the corresponding metric out-
comes. This updated dataset is used in the subsequent PIBO-
driven parameter optimization step.

C. Process parameter selection via PIBO

The goal of the optimization is to simultaneously tune ER
and Ra towards their respective target values. Source power
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Fig. 2. Prediction results from PIBO (star) with 8 samples (triangles). Two-dimensional plots of (a) acquisition values, (b) ER values, and (c) Ra values as a

function of P and PW

and pressure are widely identified as the two most influential
process parameters [7]. Therefore, we adjust PW and P, while
keeping other conditions fixed, to find combinations that best
satisfy the target performance. We use the following predictive
functions to model the relationships between PW, P, ER, and
Ra:

ER = ay * P PW + by + ri (P, PW) (1)

Ra = ag x P/PW + by + ro(P, PW) 2)

where we impose a; > 0 and ag > 0.

A Gaussian process (GP) is used to model the residual
components r; and ry. Since the interaction of PW and P
may be complex, GP better fits the residual terms on top
of the linearity relationship between PW/P and ER/Ra. This
predictive model is used to compute acquisition values that
ultimately recommend a new process condition (PW/N+1,
PN+1) for the next process. Simply put, a low acquisition
value indicates that the rescaled distance between the predicted
values and their respective targets is likely to be close to zero.
Therefore, we choose the next experimental conditions with
the lowest acquisition value, cf. Fig. 1(d).

III. RESULTS AND DISCUSSION

To examine the effectiveness of the PIBO method for
etching process optimization, we prepared an initial dataset
comprising 8 sets of process parameters. Their ER ranged from
59 nm/min to 94 nm/min, while the Ra ranged between 5.3 nm
and 11.4 nm. Subsequently, we used PIBO to obtain optimized
process conditions for an ER of 100 nm/min (+3 nm/min)
and a Ra of less than 5 nm. Fig. 2 shows the acquisition of
8 initial data (black triangle) and the data after optimization
(red star) in the parameter space of PW and P. It is noteworthy
that the optimized parameter values are not within the range
of the existing data, indicating that this prediction method
can extrapolate beyond the original data range. Fig. 3 shows
the ER and Ra as functions of the number of etching runs,
respectively. The parameters after optimization yield an ER of
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Fig. 3. (a) ER value for the N9 is within the target region of 100 + 3 nm/min,
(b) Ra value for the N9 is within the target region of < 5 nm.



99 nm/min and an Ra of 4.3 nm, which meet the optimization
targets. Fig. 4 shows the etched surface of one sample from
the initial dataset and one after optimization, respectively. It
is quite evident that the etched surface after optimization is
smoother, confirming the framework’s capabilities.

Fig. 4. 3D etch simulation results. The surface of the (b) N9 is smoother
than that of the (a) N1.
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