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Abstract—The demonstration of device-quality epilayers 

and quantum-engineered heterostructures fabricated in 

(Si)GeSn materials highlights the possibility of tunable all-

group IV Si- integrated electronics and infrared photonics. This 

work introduces a comprehensive simulation framework that 

allows one to calculate the electrostatics and the transport 

characteristics of arbitrary (Si)GeSn heterostructures for a wide 

range of temperatures. The simulated results show excellent 

agreement with experimentally measured data, thus validating 

the capability of the solver. 
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I. INTRODUCTION 

(Si)GeSn alloys constitute isovalent substitution of group- 
IV elements in cubic diamond-structured (Si)Ge lattices. This 
emerging family of semiconductors provides strain and com- 
position as two degrees of freedom to independently engineer 
lattice parameters and the band structure [1,2]. For example, 
the tensile strain boosts the electron mobility of Ge material 
by a factor of two, whereas compressive strain leads to higher 
hole mobilities [3].  The substitution of Sn into Ge lattice to 
form the semiconducting Ge1-xSnx  alloy is another possible 
route for tuning the electronic properties of Ge. The small 
energy separation of 140 meV between the indirect (L) and 

direct () conduction band valleys in Ge can be overcome by 
alloying with Sn as shown schematically in Fig. 1 [4], thus 
paving the path for achieving efficient light emission. The 
prospects of mimicking III–V and II–VI heterostructures and 
devices using all-group IV semiconductors on a Si platform 
have garnered significant interest, being motivated by the 
potential to achieve monolithic integration of electronics and 
photonics [5]. 

 

Fig. 1. Schematic showing the effect of Sn alloying on the band structure 

of Ge [4]. 

It has also been suggested theoretically that the (Si)GeSn 
material system might exhibit short-range order [6,7], which 
can serve as an additional degree of freedom for designing 
devices. Short-range chemical order (SRO) has been shown to 
play a decisive role in modulating a wide range of physical 
properties in medium-entropy alloys and high-entropy alloys. 
The enormous configurational space of these alloys implies 
multiple forms of SRO may exist. Such co-existence of SROs 
suggests an inherent structural heterogeneity, a diffuse 
electronic structure, and a new route for band engineering in 
Si–Ge–Sn medium-entropy alloys [8]. 

Based on the above discussion, it is evident that there is a 
need to develop a simulation framework that can accurately 
model the transport properties of these novel materials and the 
devices fabricated in the (Si)GeSn material system. To be able 
to accurately study the transport properties of holes in a variety 
of (Si)GeSn heterostructures, we have developed a 
comprehensive simulation framework that uses density 
functional theory results as input parameters into a 1D self-
consistent Schrödinger-Poisson (SP) solver [9]. The outputs 
of the SP solver (subband population, wavefunctions and 
corresponding eigen-energies) are then fed into a Quasi-Two-
Dimensional Monte Carlo (Q2DMC) solver that solves the 
Boltzmann Transport Equation (BTE), to obtain the low-field 
hole mobilities [10]. We use Q2DMC solver as this simulator 
allows us to investigate not only the low-field mobilities but 
also allows us to study the high-field transport characteristics 
of both electrons and holes in these heterostructures. 
Furthermore, the existing Q2DMC solver can be coupled to a 
2D or 3D Poisson solver [11] to study possible (Si)GeSn 
device characteristics. 

The paper is organized as follows:  In Section II we describe 
the main features of our SP solver coupled to the Q2DMC. 
Section III presents a comparison of the simulation and the 
experimental (Hall measurement) temperature-dependent 
hole mobility data.  Conclusions related to this study and 
prospects for devices fabricated using this material system are 
discussed in Section IV. 

II. SIMUULATOR DESCRIPTION 

To be able to calculate the subband structure and study 
transport characteristics of holes in these (Si)GeSn 
heterostructures, it is necessary to calculate the effective 
masses of the heavy-hole, light hole and the split-off bands. 
First-principles density functional theory (DFT) calculations, 
that utilize the Vienna ab initio simulation package (VASP), 
are performed for this purpose and are based on the projector 
augmented wave method [12]. The Special Quasi-random 
Structure (SQS) method is used to represent the GeSn random 
solid solution with a simulation cell containing 128 atoms, 
obtained by replicating a primitive diamond cubic cell four 



times along each dimension [13,14]. For this purpose the 
mcsqs code is utilized as implemented in the Alloy Theoretic 
Automated Toolkit (ATAT) package. A similar model of local 
density approximation (LDA) and modified Becke and 
Johnson (mBJ) method [15] was used to calculate the valence 
band maxima (VBM) offset between the Ge1-xSnx (x = 0.08) 
and the Ge layers in the heterostructure of interest using 
VASP. The VBM offset between Ge1-xSnx alloy and Ge is 
obtained employing the method proposed by Van de Walle for 
biaxially compressed Ge1-xSnx layer [16]. Simulation results 
for the electronic structure and the valence band offsets are 
shown in Fig. 2. 

As shown in the flow-chart from Fig. 3, the extracted 
anisotropic effective mass tensors, valence band offsets and 
the energy bandgaps are fed into the self-consistent SP solver. 
Note that the solution of the SP system of equations at low 
temperature is a challenging task. The system matrix 
generated by the discretization of the Poisson equation has a 
large condition number, making it extremely difficult to solve 
using conventional numerical methods. We implement a 
scheme based on the 1st order Finite Element Method (FEM) 
with a high-order integration scheme (Chebyshev quadrature 
of the 9th order) to circumvent this problem [9]. When 
studying transport at low temperatures, partial ionization of 
the dopants must be accounted for. 

Having calculated the subband structure and the 
population of carriers amongst various subbands, the next step 
in the simulation procedure is the calculation of the 
temperature dependence of the hole mobility in the quasi-2D 
confined system. The Monte Carlo method adopted for quasi-
two-dimensional hole gas (Q2DHG) is used for the solution 
of the BTE. Relevant scattering mechanism incorporated in 
our theoretical model include acoustic phonon, non-polar 

optical phonon, and alloy disorder scattering [17]. At present, 
Coulomb scattering and screening of the scattering potentials 
is not accounted for. Note that in order to correctly account for 
screening of the acoustic phonons scattering potential, it is 
necessary to use dynamical screening. Since this is a very 
formidable task, it is ‘less wrong’ to keep the acoustic phonon 
scattering potential unscreened [18]. 

 

               

Fig. 2. Top panel: Folded electronic band structure of Ge1-xSnx alloy calculated 
using 128-atom SQS supercell with DFT. Bottom panel: calculated valence 
band offsets. For x = 0.08, ΔV =183±7 meV 

 
 

Figure 3.  Flowchart explaining the hierarchical framework 

 

 
The Q2DMC utilizes a free-flight-scatter scheme 

[19,20,21,22], wherein the carrier scattering rates are 
calculated within the first-Born approximation that utilizes 
Fermi’s Golden Rule [23]. When calculating the scattering 
rates, we account for both intra-subband and inter-subband 
transitions (the inter-subband transitions can be within a given 
band or between different bands). The strength of these 
transitions depends upon the magnitude of the overlap 
integrals. Note that the acoustic and non-polar optical phonon 
vibrations are considered within the bulk phonon 
approximation.   

The matrix element squared for scattering between 
subbands n and m due to acoustic phonons is of the form [24]: 
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Ξ is the acoustic phonon deformation potential derived from 
first principles calculations, V  is the volume and vs is the 
sound velocity. The matrix element squared for non-polar 
optical phonon scattering is given by: 
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 where Do is the non-polar optical phonons deformation 
potential and ωo  is the phonon frequency.  

When calculating the alloy disorder scattering potential we 
use virtual crystal approximation that leads to the following 
expression for the matrix element squared for scattering 
between subbands n and m: 
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 where Valloy  is the alloy disorder scattering potential and 
ao is the lattice constant. 

III. SIMULATION RESULTS 

  Our in-house self-consistent SP solver functionality was 
tested on a simple heterostructure with a GeSn (8% Sn) layer 
grown on a Ge substrate (Fig. 4). The compressively strained 
SiGe layer is considered as a random alloy [9]. The study 
investigates three different samples labelled as ‘low’, 
‘medium’, and ‘high’, indicating respective doping 
concentrations. Fig. 4 depicts the structure and the 
corresponding doping profiles. Experimental sheet carrier 
densities and mobilities are derived from Hall measurement 
technique at Sandia National Lab. In previous work [9] we 
have validated the SP solver by comparing the temperature 
dependence of the experimental sheet carrier densities with 
our simulation results. At lower temperatures, incorporation 
of the partial ionization of dopants was necessary to explain 
the experimental data. 

 In Fig. 5 we show a comparison between the simulated and 
the experimentally measured hole mobilities for the sample 
with ‘low’ doping. The deviation of simulations from 
experimental data for temperatures below 50K is explained 
by the absence of impurity (Coulomb) scattering from the 
model, which dominates at low temperatures. The non-uniform 
dopant concentration (as seen in Fig. 4), necessitates a real 
space treatment of the ionized impurities scattering. This is 
beyond the capability of the current solver, but the authors are 
expanding on it to accurately simulate Coulomb scattering for 
non-uniform doping profiles. Nevertheless, the agreement is 
excellent for temperatures larger than 50 K in which range 
alloy disorder and phonon scattering dominate. 

 The scattering potential for alloy disorder scattering needed 
to match the experimental data equals 1.2 eV. This is very close 
to values published in the literature for bulk SiGe random 
alloys as a reference [25,26]. Future studies within our group 
will focus on derivation of the allow disorder scattering 
potential from first principles. This can give a better insight on 
the importance of alloy disorder scattering mechanism in 
samples in which it is believed and it is experimentally 
determined whether short-range order exists. 

IV. CONCLUSIONS 

In summary, a simulation hierarchy was presented that 

combines DFT calculations for the electronic structure, the 

effective mass 1D self-consistent SP solver, and an effective 

mass Q2D Monte Carlo solver for the calculation of the 

temperature dependence of the hole mobility. This simulation 

framework allows us to explain quite closely the trend in the 

experimental data. We find that acoustic phonon scattering 

starts to be important at temperatures higher than 100 K. The 

alloy disorder scattering potential, which at present is 

considered as a fitting parameter, gives us information on the 

strength of this scattering mechanism for the case of a random 

alloy. Present studies are directed towards understanding of 

the role of short-range order in heterostructures with record 

high mobilities, having as a reference the value of the alloy 

disorder scattering potential for a GeSn random alloy used in 

this work.  
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Fig. 4. Doping profiles for the three structures labeled as having ‘low’, 
‘medium’ and ‘high’ doping. The structure being simulated is shown in the 
inset. SIMS measurement technique was used to extract the doping profiles of 
the three samples being considered in our studies. 

 

Fig. 5.  Comparison of the simulated (solid line) and the experimental (dotted 
line) Hall hole mobility at different temperatures. Shown here is a comparison 
with experiments for the ‘low’ doped sample in which Coulomb scattering, 
except at very low temperatures, does not play significant role. For the 
samples having ‘medium’ and ‘high’ doping, it will be necessary to include 
Coulomb scattering and screening of this scattering potential.  
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