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Abstract—Optical proximity correction (OPC) is a crucial step
in compensating for the optical proximity effect which causes pat-
tern distortion in contemporary integrated circuit manufacturing.
Traditional OPC methodologies rely on lithography modeling and
simulation. However, given the escalating intricacies of design
and process, there arises a pressing necessity for an innovative
OPC approach integrated with deep learning techniques. Such a
strategy is imperative to fulfill the dual requirements of correction
performance and efficiency in semiconductor manufacturing.

In this paper, we proposed a framework called Context-
OPCGAN, which is based on generative adversarial networks
(GANs). Context-OPCGAN incorporates surrounding environ-
ment considerations into OPC modeling, resulting in enhanced
pattern correction performance. Compared to methods that
neglect the influence of neighboring pattern topology, Context-
OPCGAN achieves an 8% increase in the process variation
band (PVBAND). Furthermore, it maintains mask and contour
graphics continuity even after slice stitching. Context-OPCGAN
exhibits significant potential for efficient OPC modeling, partic-
ularly in high-volume IC manufacturing.

I. INTRODUCTION
A. Background

The goal of OPC is to accurately replicate the transforma-
tion of the mask pattern into the photoresist, while accounting
for the non-linear characteristics of mask imaging within
the OPC model. Traditional OPC approaches are typically
divided into two categories: model-based technology[1, 2] and
inverse lithography-based technology (ILT)[3-5]. While both
methods exhibit good performance, they necessitate multiple
iterations of photolithography simulations during the iterative
optimization process, which is both labor-intensive and time-
consuming. Consequently, there has been a growing interest
among researchers in integrating machine learning into OPC
to mitigate these time-consuming aspects.

In the field of computer vision, Generative Adversarial
Network (GAN) has shown impressive results in image
conversion[6]. In recent years, several researchers have fo-
cused on GAN-based OPC methods, particularly in process
implementation and model verification, demonstrating the fea-
sibility of applying GAN to OPC.

B. OPC-GAN Flow

Yang[7] initially introduced an OPC-oriented GAN flow that
can learn the target layout-mask mapping. While this approach
shows promising results, it is limited by its focus on enhancing
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image conversion accuracy and its reliance on a collection of
photomask images. Assembling a set of qualified photomask
images proves prohibitively expensive and time-consuming,
posing significant challenges for its practical application in
the industry. Shao[8] was the first to propose a GAN-OPC
model that closely resembles the industrial process. This model
encompasses two GANs: OPCnet for OPC and Lithonet for
lithography. The training process of this model unfolds in two
stages. Initially, Lithonet is trained using collected mask and
wafer contour datasets to achieve high accuracy. In the second
stage, the parameters of Lithonet are set and cascade Lithonet
to OPCnet. That is, the target layout is inputted into OPCnet,
which then converts it into a mask. This mask is then inputted
into Lithonet, which converts it into a simulated wafer contour.
OPCnet performs self-training with the target layout dataset,
while iterative optimization aims to minimize discrepancies
between the simulated wafer contour and the target layout.
This model can construct Lithonet with a limited amount of
mask and wafer contour datasets, subsequently relying solely
on target layout for self-supervised training to obtain OPCnet.
Consequently, it effectively addresses the primary challenge
related to data sources.

C. Purpose of Context-OPCGAN

Typically, the training set of a deep-learning-based OPC
model consists of a series of layout clips. When these clips
are obtained through sequential slicing of the layout, adja-
cent clips may lose their original adjacency. However, the
surrounding layout has a significant influence on the OPC
process. Traditionally, the construction of the OPC model has
relied on the test pattern. With continuous scanning by the
scanning electron microscope (SEM), the continuous layout
can be directly utilized for dataset production. Hence, it is
feasible to develop an OPC model and dataset production
method that considers the surrounding environment. The main
contributions of this paper are outlined below:

*Proposing Context-OPCGAN, a model that incorporates
the surrounding environment of the layout.

*Analyzing a critical methodological issue in existing GAN-
OPC processes: the omission of mask thresholding.

*Designing a novel slicing method that includes the sur-
rounding environment for model validation.



II. CONTEXT-OPCGAN FRAMEWORK
A. Context-Aware Slicing Methods

As depicted in Figure 1, the continuous layout is initially
segmented into large slices of 1024 x 1024. Subsequently,
each of these large slices is subdivided into 9 smaller slices
of 256 x 256. The 256 x 256 area serves as the region for the
OPC operation, while the area outside the 256 x 256 area is
considered as the surrounding environment. The dimensions
of this surrounding area are carefully determined to maintain
an appropriate ratio with the central area. In our experiment,
we extract squares from the same center of the aforementioned
256 x 256 slice. These squares possess varying side lengths,
resulting in clips with side lengths of 320, 384, 448, and 512
respectively.
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Fig. 1. Context-Aware Clips Cut

B. Structure of Context-OPCGAN

The architecture of the generator and discriminator are
shown in Table I. OPCnet and Lithonet use the same generator
generator and discriminator. The training process of Context-
OPCGAN is divided into two stages as shown in Figure 2.
In the first stage of training for Lithonet, the training set is a
pair of clips of mask and wafer contour. The objective is to
ensure that the clips derived from the input mask clips once
transformed by Lithonet, closely resemble the actual wafer
contour. We use L2 loss to measure this resemblance. The
loss of the generative network is shown as eql.

Ly = log(1 — D(Lithonet(x))) + % lz—yl* (D

In the second stage of training for OPCnet, only target
layout clips are required for the training set. Initially, OPCnet
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Fig. 2. Training Process of Context-OPCGAN (a)Training for Lithonet
(b) Training for Cascaded Context-OPCGAN

TABLE I
STRUCTURE OF GENERATOR AND DISCRIMINATOR

Type Layer Filter Stride | Output-size
Input - - 256x256x%1
Conv-1 5%5%32 2 128x128%32

Discriminator Conv-2 5x5x64 2 64x64x64
Conv-3 5%5x%128 2 32x32x128

Conv-4 5%5%256 2 16x16x256

Output 5x5x1 1 8x8x1

Input - - 256Xx256%x32
Conv-1 5%5%32 2 128%128x32

Conv-2 5x5x64 2 64x64x32

Conv-3 5x5x128 2 32x32x64

Conv-4 5%5%256 2 16x16x256

Generator Resnet - - 64x64x128
Deconv-1 5x5%256 1 16x16x256

Deconv-2 | 5x5x128 1 32x32x128

Deconv-3 5x5x64 1 64x64x64
Deconv-4 5%5%32 1 128%128x32

Output 5x5x1 1 256x256x1

undergoes pre-training to imbue the model with the capability
to generate the initial contour. This pre-training phase utilizes
a training set comprising target layout clips and their corre-
sponding versions processed by Gaussian noise.The objective
function is the same as eql. Pre-training enables OPCnet to
generate well-defined polygons. Subsequently, OPCnet and
Lithonet are cascaded, wherein the output of OPCnet serves
as the input for Lithonet. The parameters trained during the
first stage are imported into Lithonet and remain constant
throughout the training process, while the pre-trained parame-
ters are imported into OPCnet. The objective of the cascaded
network is to maximize the similarity between the input target
layout and the output wafer contour. The loss of the generative
network is shown as eq?2.

1
Ly, = - |z — Lithonet(OPCnet(z))||,

+ Y [V (OPCret()))|

C. Mask Thresholding

During the training process of GAN, the mask needs to be
processed. In the first stage of Lithonet training, binarization
pixel value of mask is employed as input, so inputting a
binary image to Lithonet can get the most realistic output.
However, during the second training stage, OPCnet generates
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graphics with continuous pixel values. Following the cascad-
ing process, the output graphics are then fed into the pre-
trained Lithonet. For rigorousness, it is necessary to perform
threshold processing during the training process. However,
binary processing of the output from OPCnet would lead to
the disappearance of neural network gradient backpropagation.
Hence, an approximate processing method is adopted. Obvi-
ously, the threshold value will affect the number of remaining
pixels in the processed graph. We evaluated the effect of
model training with the threshold value ranging from 0.1-0.5,
ultimately setting the final threshold at 0.2.

D. Performance Parameters

In the study of the GAN-OPC problem, PVBAND is defined
as the difference between the photoresist profile and the target
layout[9]. Since the layout graphics are all binarized, the
value of each pixel in the target layout is O or 1, which
can be regarded as the true value. Then the difference can
be described as the prediction accuracy of each pixel of the
photoresist profile multiplied by the area of each pixel.

PVBAND = (FP + FN) X pizel — area 3)

This parameter serves as metrics to gauge the performance
of OPC models in analogous works.

III. EXPERIMENTAL RESULTS
A. Dataset Collection

The dataset used in the experiment is the ICCAD2 subset
of the ICCAD2012 dataset, and the layout size in the dataset
is about 13000nm?2. GAN-based OPC is based on pixel
processing. Therefore, during the feature extraction from the
layout, a density-based extraction method is utilized to procure
the feature matrix of the layout.

When the clip size is larger, fewer clips are obtained through
division, resulting in each slice containing more polygons.
Intuitively, the more polygons in each clip, the more infor-
mation the model can obtain during training. However, when
the pixel size becomes excessively large, considering that the
layout is a binary graph and the error is quantified by the
number of pixels, the desired result may not be accurately
achieved. Simultaneously, when the pixel size is excessively
small, the number of polygons contained in each slice is few,
and the model may not acquire sufficient information during
training. Figure 3 illustrates clips with pixel sizes set to 10nm,
4nm, and 1nm. Considering the impact on model training and
measurement accuracy, the pixel size of this experiment is set
to 4nm.

B. Training Process of Context-OPCGAN

Figure 4(a) illustrates the curve of L2 loss versus training
progress for training Lithonet in the first stage. It can be seen
that at about 2500 training batches, the L2 loss converges to
around 0.015. At this time, the wafer contour converted by
Lithonet and its corresponding mask is shown in Figure 4(b).

In the second stage of training, pre-training OPCnet to
generate layout polygons is essential to prevent mode collapse.

Fig. 3. Layout Clips with Different Pixel-Size
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Fig. 4. L2 Loss Curve for Training Lithonet and Transformed Contour

Figure 5 illustrates the pre-training results of OPCnet, show-
casing the original target layout alongside its converted graph.
Remarkably, the graph can be generated in approximately 1000
training batches, demonstrating rapid training speed.

Fig. 5. The Pretrain Output of OPCnet

Despite incorporating a smoothing loss function, the output
of OPCnet does not yield a binarized graph. To ensure
experimental rigor, we investigated the impact of omitting
thresholding on the results. After training, we separately
processed the mask output from OPCnet with and without
thresholding before inputting it into Lithonet. The experiment
results comparing the contours are depicted in Figure 6. In
Figure 6, (a) represents the target layout slice, while (b) and
(c) display the contour obtained without and with threshold-
ing, respectively, using two different methods. Notably, the
difference in the final output graph is minimal. We further
compared the averages PVBAND for 150 test slices, with an
acceptable error range.
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Fig. 6. The Difference Between Whether The Output of OPCnet is Thresh-
olded or Not

C. Performance Evaluation

In our experiments, a training set with varying sizes of sur-
rounding environments and without surrounding environment
are constructed. We adhered to the same procedure across
experiments involving five distinct training sets. Table 3 shows
the average performance parameters of 150 clips after training
and testing on the 5 datasets of the experimental design. In
Column 256, representing no ambient input, the results show
that with an ambient width of 128 pixels (Column 384),
PVBAND is optimized by 8%. However, increasing the input
size inevitably leads to higher time costs. The time taken to
process 150 large slices of 1024 sides is also provided in
the table. Context-OPCGAN exhibits certain improvements
compared to methods that do not consider the surrounding
environment.

TABLE 11
STATISTICS OF PVBAND RESULTS
Size 256 320 384 448 512
PVBAND | 0.01618 | 0.01586 | 0.01495 | 0.01582 | 0.01526
Time(s) 219 248 278 322 364

Figure 7 illustrates the model trained on the 384 dataset,
and then spliced into large slices after converting the test set.
The image conversion maintains continuity at the connection
of small slices, demonstrating that our model is also competent
for the application of the real layout.
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Fig. 7. Mask and Contour Images Obtained Using the Trained Context-
OPCGAN

IV. CONCLUSION

This paper introduces Context-OPCGAN, a model that
integrates the surrounding environment into the optical prox-
imity correction process. Leveraging generative adversarial
networks, this model is tailored for continuous layouts and can
dynamically adjust the size of the surrounding environment
to account for its influence on OPC. To validate the model’s
efficacy, we devised a slicing method that incorporates the
surrounding environment. We conducted experiments training
the model under varying surrounding environment sizes and
compared performance parameters. Utilizing the ICCAD2012
dataset with an input slice size of 384, we observed an 8% im-
provement in PVBAND compared to ignoring the surrounding
environment (slice size of 256). Additionally, upon stitching
the slices together, our model demonstrated well-maintained
continuity in the generated mask and contour graphics.
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