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Abstract—Accurate modeling of carrier transport in nanode-
vices requires incorporating nonparabolic band effects, especially
under strong quantum confinement. In this work, we present a
novel implementation of nonparabolic corrections in a 3D multi-
subband Monte Carlo simulator that can handle nonuniform elec-
tric fields and arbitrary confinement profiles. We derive the mod-
ified equations of motion accounting for nonseparable energy-
momentum-position dependencies and validate our method in Si
and InP nanowire transistors, showing that nonparabolicity has
a material-dependent impact.

Index Terms—Monte Carlo, multi-subband, nonparabolicity

I. INTRODUCTION

Modeling the carrier band structure is a crucial aspect in the
simulation of electronic devices. The effective mass approx-
imation is widely employed, especially for near-equilibrium
properties, and nonparabolicity can be added to expand its
validity range [1], [2]. However, the standard formulation of
nonparabolicity couples the kinetic energy in the transport
and lateral directions. Therefore, when low-dimensional (1D
or 2D) electron gases with lateral quantum confinement are
considered, different approximations have been proposed [2]–
[5]. Nonparabolic corrections are especially important when
2D confinement is included because it induces large kinetic
energy in the confinement plane [5]. However, the approach
in [5] is only valid if the lateral confinement is homogeneous in
the transport direction. If the confining potential varies along
the device, as in the Multi-Subband Ensemble Monte Carlo
(MSEMC) approach [6], nonstandard equations of motion are
obtained. In this paper, we derive such equations (Section
II), propose an implementation in a 3D MSEMC simulator
(Section III), study the impact of nonparabolicity on the
device characteristics (Section IV) and state our conclusions
(Section V).

II. NONPARABOLIC CORRECTIONS FOR 2D CONFINEMENT

The energy eigenvalues, Ep
µ, of the (parabolic) 2D

Schrödinger equation can be written as

Epµ = Uµ + γµ (1)
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where Uµ and γµ denote the expectation values of the 2D
potential U(x, y) and kinetic energy, respectively, for the µ-th
eigen-function:

Uµ = 〈U(x, y)〉

γµ =

〈
~2k2x
2mx

+
~2k2y
2my

〉
(2)

According to [5], nonparabolic correction to energy can be
taken into account as:

Eµ(kz) = Uµ +
1

2α

(√
1 + 4α

(
γµ +

~2k2z
2mz

)
− 1

)
(3)

where α is the nonparabolicity parameter. The subband min-
imum energy taking into account nonparabolicity can be
computed as:

Enp
µ = Eµ(0) = Uµ +

1

2α

(√
1 + 4αγµ − 1

)
(4)

In a simulator based on the mode-space approach [7], the
Schrödinger equation is solved in several device cross sections
located at positions zi, providing values for Epµ,i and Uµ,i. In
each interval i, with zi < z < zi+1, we define the functions
Ep
µ(z) and Uµ(z) as linear interpolations of the respective

values at the boundaries (see Fig. 1):

Ep
µ(z) = Ep

µ,i +
z − zi
zi+1 − zi

Fµ,i for zi < z < zi+1

Uµ(z) = Uµ,i +
z − zi
zi+1 − zi

Vµ,i for zi < z < zi+1

(5)

where the slopes Fµ,i and Vµ,i are defined as:

Fµ,i =
Ep
µ,i+1 − Ep

µ,i

zi+1 − zi
, Vµ,i =

Uµ,i+1 − Uµ,i
zi+1 − zi

(6)

In this way, the energy of an electron at position z with
wave-vector kz can be computed as:

Eµ(z, kz) = Uµ(z)+

√
1 + 4α

(
Ep
µ(z)− Uµ(z) +

~2k2z
2mz

)
− 1

2α
(7)

As a consequence, in Eµ(z, kz) the dependence on z and kz
cannot be separated. Moreover, the subband profile Enp

µ (z) =
Eµ(z, 0) (see Figure 1) is not linear in z unless Fµ,i = Vµ,i.

Thanks to energy conservation, during a trajectory of an
electron with total energy E we can relate the position z
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Fig. 1. Energy diagram including the linear interpolations of Ep
µ(z) and

Uµ(z) between positions zi and zi+1 and the resulting nonlinear Enp
µ (z).

and the wave-vector kz: E = Eµ(z, kz). In this way, we can
compute the absolute value of kz as a function of z:

kz = ±
√

2mz

~

√
E − Ep

µ(z) + α
(
E − Uµ(z)

)2
(8)

Then, employing (7) and energy conservation, the 1D equa-
tions of motion, i. e. the time evolution of electron position,
z, and wave-vector, kz , can be computed as:

dz
dt

= ±
√

2

mz

√
E − Ep

µ(z) + α
(
E − Uµ(z)

)2

1 + 2α
(
E − Uµ(z)

) (9)

dkz
dt

= −1

~
Fµ,i + 2αVµ,i

(
E − Uµ(z)

)

1 + 2α
(
E − Uµ(z)

) (10)

where the sign in the first equation depends on the sign of kz .
Equation (9) can be solved implicitly as:

t− t0 = ±
(
G(z)−G(z0)

)
(11)

where t0 and z0 are the initial time and position, respectively,
and

G(z) =

√
mz

2α

(
Vµ,i − Fµ,i

)
ln
(
g(z)− h(z)

)
− g(z)

V 2
µ,i

(12)

g(z) = 2Vµ,i
√
α

√
E − Ep

µ(z) + α
(
E − Uµ(z)

)2
(13)

h(z) = Fµ,i + 2αVµ,i
(
E − Uµ(z)

)
(14)

In (12), the argument of the logarithm, g(z)− h(z), could in
principle be negative. However, it can be shown that its sign
is preserved during a flight: a possible imaginary part of G(z)
cancels out with that of G(z0). As a consequence, in (12) we
can safely employ the absolute value in the argument of the
logarithm and consider ln

∣∣g(z)− h(z)
∣∣.

III. IMPLEMENTATION IN THE MSEMC SIMULATOR

The previous equations are the building blocks for the
implementation of the equations of motion in the Monte Carlo
code. The simulation of the flight of an electron with total
energy E and duration tf is represented schematically in the
flowchart of Fig. 2 and explained in the rest of this Section.

At the beginning of the flight, we locate the interval i
corresponding to the position of the electron and set the
direction of its motion, s = ±1, according to the sign of kz .

This value, s, represent the sign in (9) and (11) and we need
to detect when the particle changes its direction of motion.
This can happen during a flight only if the electron reaches
the barrier defined by the subband profile Enp

µ (z) (in this
semi-classical approach we do not consider the possibility of
tunneling). We also need to detect when the electron moves
from one interval to an adjacent one, since in this case the
values for the interpolations of Ep

µ(z) and Uµ(z), including
Fµ,i and Vµ,i, change. Combining all these considerations,
the first step is to check whether the electron can reach the
barrier inside the current interval, as in the case depicted in
red in Fig. 3. A first trivial condition that can be used to
detect the possibility of “rebound” against the barrier is that
the nonparabolic energy at the end of the interval (at Enp

µ (zi+1)
if s = +1 or Enp

µ (zi) if s = −1) is smaller than E. However,
since Enp

µ (z) is not linear, it could have a maximum inside the
interval. This maximum exists and is located inside interval i
if the two following conditions hold:

Fµ,i > −2αVµ,i(E
np
µ (zi)− Uµ,i)

Fµ,i < −2αVµ,i(E
np
µ (zi+1)− Uµ,i+1)

(15)

and its value can be computed as:

1

Vµ,i − Fµ,i

(
Ep
µ,iVµ,i − Uµ,iFµ,i +

F 2
µ,i

4αVµ,i

)
(16)

Therefore, a rebound is also possible if the electron energy,
E, is lower than such maximum, if it exists.

By checking the previous conditions we detect whether a
rebound is possible. In this case, we compute its position, zr,
by solving the equation Enp

µ (zr) = E (a quadratic equation
in zr). Then, we need to check if this happens during the
requested flight time: we compute the time tr needed to reach
position zr by employing (11). If tr < tf , we move the particle
to zr, invert the direction of its motion (by changing the sign
s), and simulate the remaining flight with duration tf − tr.

If the electron energy, E, is larger than the maximum
subband energy in the interval, it could reach the boundary
position zb (that is zi+1 if s = +1 or zi if s = −1), as in
the case depicted in blue in Fig. 3. To check if this happens
before tf , we compute tb, the time needed to reach zb, by
employing (11). If tb < tf , we move the electron to the
boundary of the interval and simulate the flight in the adjacent
interval with duration tf − tb.

If the electron does not reach either the barrier or the
boundary of the interval, we compute the final position zf by
solving numerically the (implicit) equation given by (11). This
computation is performed numerically through the iteration of
Newton’s method until a given tolerance is reached. Once the
position is known, the final value of the electron wave-vector,
kz is obtained employing energy conservation (8). Now, the
sign is kept equal to the initial sign of kz , since we know that
the electron does not change its direction in the remaining
time.

IV. RESULTS

The 3D MSEMC simulator [6] with nonparabolic correc-
tions has been employed to study cylindrical nanowires with
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direction s = ±1
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Fig. 2. Flow diagram of the numerical simulation of the dynamics of an electron inside a device slice between zi and zi+1, with flight time tf .

zi zi+1

Enp
µ (z)

(z0, E1) (zr, E1)tr

(z0, E2) tb (zb, E2)

en
er
g
y

Fig. 3. Schematic motion of an electron with energy E1 that would rebound
against the subband profiles, and another one with energy E2 which can reach
the boundary of interval i.

Si and InP channel with diameter d = 5 and d = 10 (see
Fig. 4). Other common parameters employed are: gate length
LG = 15 gate insulator thickness tox = 1.5 (SiO2 and Al2O3

for Si and InP, respectively), and mid-gap metal gate work
function. For Si conduction band valleys, we employ α = 0.5
[2]; for InP, we consider parameters from [8], with α = 0.61
for the Γ valley and neglect nonparbolicity for the L valleys
(for which [8] recommends a negative value in the longitudinal
direction and a positive value in the transverse direction).

Fig. 5 compares the transfer characteristics in linear regime
(Vd = 0.05) of these devices with and without taking into
account nonparabolicity. It can be observed that the non-
parabolic correction decreases the drain current, ID, for Si
devices but increases it for InP devices for all nanowire
diameters and all considered values of VG. For both materials,
the variation induced by nonparabolic corrections increases
for narrower nanowires, due to the larger in-plane kinetic
energy induced by confinement. For the narrower (d = 5)

d tox Lg

(a) (b)

Fig. 4. (a) Cross section and (b) lateral view of the simulated devices.
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Fig. 5. ID-VG curves of transistors based on Si and InP nanowires with
diameter (a) d = 5 and (b) d = 10.
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Fig. 6. Maximum velocity vz and linear electron density ninv at position zp
where velocity is maximum, as a function of VG for (a) Si- and (b) InP-based
transistors.

InP nanowire, a large increase of ID can be observed around
VG = 1.25 due to the onset of conduction of the L valleys.

To investigate the cause of the different behavior in Si and
InP nanowires, we compute the average electron velocity in
the channel direction, vz , and the linear inversion density ninv.
Fig. 6 shows both quantities computed for nanowires with
d = 5 (for which the effect is stronger) at position zp where vz
reaches its maximum. In the case of Si, the inversion density
is essentially the same whether the nonparabolic correction
is included or not, while the average velocity is lower if
it is considered. This is reasonable, since nonparabolicity
decreases the energy and the velocity for electrons with a
given value of kz . This last observation is also true in the
case of InP nanowires, i. e. the average velocity is lower when
nonparabolic correction are included. However, in this case, we
also observe an increase of the inversion charge density, which
compensates the velocity decrease and produces an increase
of ID.

V. CONCLUSIONS

We have presented a novel implementation of nonparabolic
corrections within a Monte Carlo transport kernel, integrated
into a multi-subband simulator for 3D nano-devices. This
approach enables accurate modeling of carrier dynamics across
a wide energy range, beyond the limitations of parabolic
band approximations. Our results reveal that nonparabolicity
significantly influences key device characteristics and we
demonstrate that the magnitude and nature of its impact is
material-dependent: it reduces current in Si devices due to
decreased carrier velocity, while it enhances current in InP
devices through increased inversion charge.
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