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Abstract—The presence of two nearly degenerate conduction
band valley states is a critical challenge for electron spin-qubits
in silicon since it can lead to leakage of quantum information.
Several heuristic strategies have been proposed to enhance the
energy gap between these two states, also referred to as the valley
splitting. In this work, we focus on the systematic optimization of
the valley splitting in Si/SiGe heterostructures through the precise
engineering of the Ge atom distribution within the quantum
well, i.e., epitaxial profile optimization. Our approach is based
on envelope-function theory accounting for the effects of strain,
compositional alloy disorder and non-trivial resonances. Our
main result is a novel design, called the modulated wiggle well, that
provides a reliably large deterministic enhancement of the valley
splitting (assisted by shear strain). Previously proposed designs
are recovered systematically as special cases of our constrained
variational optimization problem.

Index Terms—Silicon spin qubits, valley splitting, quantum
dots, optimization.

I. INTRODUCTION

Silicon-germanium (SiGe) heterostructures are a major can-
didate for realizing fully scalable quantum computers due to
their long spin coherence times and compatibility with estab-
lished semiconductor fabrication technology [1]. Experiments
have demonstrated state initialization, readout as well as one
and two-qubit gate operations exceeding the fault-tolerance
threshold [2]. Scalable quantum computing architectures re-
quire coherent coupling of distant qubits to overcome crosstalk
and quantum dot (QD) wiring limitations [3–5]. As a major
step in this direction, coherent qubit transfer across the chip
was recently demonstrated using conveyor-mode electron spin-
qubit shuttles [6, 7].

A key challenge in strained Si/SiGe quantum wells (QWs) is
the existence of two nearly degenerate conduction band valley
states that can lead to leakage of quantum information outside
of the computational Hilbert space. Several strategies have
been proposed to enhance the energy splitting between the two
valleys (i.e., the valley splitting) such as sharp interfaces, Ge-
spikes, oscillating Ge-concentrations (“wiggle well”) and shear
strain engineering [8, 9]. In all these approaches, one aims to
tailor the Ge concentration profile X (z) in the QW such that
a resonance in the coupling of the two valley states is activated
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Fig. 1. (a) First Brillouin zone of the face-centered cubic (fcc) lattice.
In Si/SiGe QWs, the degeneracy between the six equivalent conduction
band minima in Si near the X-points is lifted by biaxial tensile strain.
(b) Energy diagram for the conduction band ground states in Si/SiGe quantum
dots. Biaxial strain due to lattice mismatch between Si and SiGe leads
to a separation of the two valleys oriented along [001] and [001] from
the other four conduction band ground state valleys. The heterostructure
potential and alloy disorder finally lift the remaining degeneracies. (c)-(e) The
effect of strain on the Si crystal structure. Shear strain along the [110]
direction eliminates a nonsymmorphic crystal symmetry, which unlocks a
low-frequency resonance mechanism that can be triggered by epitaxial profile
design.

which eventually enhances the valley splitting. The inclusion
of Ge, however, inevitably leads to alloy fluctuations that
cause a statistical broadening of the valley splitting distribution
in the device. Robust Si/SiGe qubits require a deterministic
enhancement of the valley splitting that reliably exceeds
the Zeeman splitting on the entire chip to avoid spin-valley
hotspots [10]. This is especially important for shuttling-based
quantum computing architectures [4], where the variability of
the valley splitting is probed over large domains.

In this work, we consider the enhancement of the valley
splitting as a constrained optimization problem on the epitaxial
profile. Our approach is based on an envelope function theory
that accounts for the effects of strain and alloy disorder [11].



II. VALLEY SPLITTING MODEL

The interaction of the two nearly degenerate low-energy
valley states at the conduction band minimum k = ±k0 ≈
(0, 0,±0.84) × 2π/a0 of a biaxially (tensile) strained QW
grown in [001] direction is described by the coupled envelope
equation model [9, 12, 13]
(
H0 (r) Vc (r)
V ∗c (r) H0 (r)

)(
Ψ+ (r)
Ψ− (r)

)
= E

(
Ψ+ (r)
Ψ− (r)

)
, (1)

where Ψ± (r) denotes the envelope wave functions of the cor-
responding valley states. Here, the valley splitting corresponds
to the energy difference between the first excited state and the
ground state. The Hamiltonian in (1) involves

H0 (r) = − ~2

2mt

(
∂2

∂x2
+

∂2

∂y2

)
− ~2

2ml

∂2

∂z2
+ U (r) , (2)

where ml and mt are the effective mass tensor components at
the silicon conduction band minimum and U (r) is the total
confinement potential. The total confinement potential

U (r) = Uhet (r) + UQD (x, y) + UF (z) , (3)

describes the effects of both the epitaxial heterostructure and
the electrostatic fields induced by the metal gates at the top
surface of the device. The heterostructure potential Uhet (r)
describes the potential induced by the Ge atoms in the SiGe
alloy, i.e., a type-II Si/SiGe QW with random alloy disorder.
The average heterostructure potential is proportional to the
nominal Ge concentration profile, 〈Uhet(z)〉 ∝ X(z). We
assume a harmonic QD confinement potential induced by the
gate electrodes

UQD (x, y) =
mt

2

(
ω2
xx

2 + ω2
yy

2
)
, (4)

where ωx and ωy describe the lateral extension of the QD
and thus the orbital splitting ∆Eorb = min (~ωx, ~ωy). In
the limiting case of ωx = ωy , the QD takes a circular shape.
Finally, we assume a constant electric field F along the growth
direction, which induces the potential

UF (z) = −e0Fz, (5)

where e0 is the elementary charge. The intervalley coupling
Vc (r) in (1) is described by

Vc (r) = e−2ik0·ru∗+k0
(r)u−k0

(r)U (r) , (6)

which involves the lattice-periodic part of the Bloch factors at
the two valleys, u±k0

(r). In first-order degenerate perturbation
theory, the valley splitting EVS = 2|∆| is determined by the
complex-valued inter-valley coupling parameter [11]

∆ =

∫
d3r Vc (r) |Ψ0 (r)|2 , (7)

where Ψ0 (r) is the envelope function of the twofold degen-
erate ground state of the single valley Hamiltonian H0 (r).

TABLE I
PARAMETER VALUES USED IN THE COMPUTATIONS

Symbol Description Value
∆Ec Si/Ge conduction band offset 0.5 eV
Xb Mean barrier Ge concentration 0.3

~ωx, ~ωy Orbital splitting energy (circular QD) 3.0 meV
F Electric field strength 5 mV/nm

hQW Quantum well thicknessa 75 ML
aGiven in monolayers (ML = a0/4) of relaxed Si.

III. STRAIN AND RESONANCES

The model described above predicts that a large valley
splitting can be achieved when the confinement potential
U (r) contains components oscillating at a spatial frequency
of 2k0, owing to the presence of the exponential term in the
expression for Vc (r), see (6). This principle underpins the
design of so-called wiggle well heterostructures, in which the
Ge concentration profile X(z) is engineered to oscillate at this
resonant frequency,

〈Uhet(z)〉 ∝ X(z) ∝ cos(qz), q = 2k0. (8)

Such devices are challenging to fabricate since 2k0 ≈ 1.7 ×
2π/a0 corresponds to rapid oscillations at the length scale of
about 2.4 monolayers.

In the presence of shear strain, a second, lower-frequency
resonance becomes accessible at 2k1 ≈ 0.32 × 2π/a0. This
arises due to the folding of the 2k0 component in the spectral
content of Vc (r), back into the first Brillouin zone, such that
2k1 = 4π/a0 − 2k0. In unstrained silicon, this resonance is
suppressed due to symmetries of the crystal and the Bloch
factors u±k0

(r) [13].
Shear strain modifies the lattice and the associated Bloch

factors, thereby activating the 2k1 resonance. In our work,
we compute the band structure coefficients—including Bloch
factors, effective masses, and conduction band minima—using
a non-local empirical pseudopotential model (EPM) [14]. A
key advantage of the EPM is its natural capability to describe
the effects of homogeneous strain, modeled as a displacement
of ionic positions

R′i = (I + ε)Ri, (9)

where ε is the strain tensor. Incorporating strain into EPM
calculations involves several steps: adjusting reciprocal lat-
tice vectors to G′i ≈ (I − ε)Gi, modifying the primitive
cell volume to Ω′p ≈ (1 + tr (ε)) Ωp, interpolating atomic
pseudopotentials at the strained lattice points, and including
internal ionic displacements that describe sublattice shifts [15].
These effects are illustrated schematically in Fig. 1. In this
work, a weak homogeneous shear strain of 0.1 % is assumed
in the QW layer.

IV. DISORDER AND STATISTICS

Compositional alloy disorder in the heterostructure is de-
scribed using a statistical model for the distribution of Si and



Ge atoms in the device depending on the local concentration
X(Ri) at each lattice site Ri. The model potential reads [11]

Uhet(r) = ∆Ec Ωa
∑

i

Ni δ (r−Ri) , (10)

where ∆Ec is the Si/Ge conduction band offset, Ωa is the
atomic volume and Ni ∼ Binomial (p = X(Ri)) is a random
variable determining the atomic species depending on the
nominal epitaxial profile X . The confinement potential can
therefore be decomposed into a sum of the average potential
and the fluctuations from the average,

U (r) = 〈U (r)〉+ δU (r) . (11)

The above potential also renders the inter-valley coupling
parameter (7) a stochastic quantity, with a deterministic com-
ponent ∆det and a random component ∆rand,

∆ = ∆det + ∆rand, (12)

where

∆det =

∫
d3r e−2ik0·ru∗k0

(r)u−k0 (r) 〈U (r)〉 |Ψ0 (r)|2 ,

∆rand =

∫
d3r e−2ik0·ru∗k0

(r)u−k0
(r) δU (r) |Ψ0 (r)|2 .

Using the central limit theorem, ∆ obeys a circular symmetric
normal distribution in the complex plane with (approximately)
independent and identically distributed real and imaginary
parts

Re (∆) ∼ Normal

(
µ = |∆det| cos (Θ), σ2 =

1

2
Γ

)
, (13)

Im (∆) ∼ Normal

(
µ = |∆det| sin (Θ), σ2 =

1

2
Γ

)
, (14)

with mean ∆det = |∆det| exp (iΘ) and covariance

Γ = 〈|∆rand|2〉 (15)

The mean µ and variance σ2 of the normal distributions
in (13)–(14) are determined by ∆det = ∆det (X,Ψ0) and
Γ = Γ (X,Ψ0), which are both complex functionals of the
Ge concentration profile X (z), the electron density distribu-
tion |Ψ0 (r)|2 and (strain-dependent) band structure parame-
ters [11]. A large mean is due to a deterministic enhancement
of the valley splitting, whereas a large variance is caused by
a strong random component.

V. OPTIMIZATION

We seek for an epitaxial profile in the QW that guarantees a
reliably large valley splitting by providing an optimal balance
between a large deterministic and a small disorder-induced
contribution. We formulate this objective as a constrained
optimization problem for the Ge concentration profile X (z)

max
X

|∆det (X,Ψ0)|2
Γ (X,Ψ0)

(16a)

|Ψ0|
2
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Fig. 2. Epitaxial profiles obtained from variational optimization of the valley
splitting for different cost functionals. All epitaxial profiles are constrained
to a Ge budget of Xmean = 5 % within the QW. (a) Modulated wiggle
well computed by maximizing Eq. (16a) with kc = 0.38 × 2π/a0.
(b) Conventional wiggle well for comparison. Within the QW, the Ge profile
is X (z) ∝ cos (2k1z). (c) Ge spike-like structure obtained by maximizing
|∆det| under an intermediate frequency cutoff kc = 0.06× 2π/a0. (d) Flat
Ge concentration, computed by maximizing Eq. (16a) under a stringent
frequency cutoff kc = 0.01× 2π/a0.

subject to the constraints

H0 (X) Ψ0 (r) = E0Ψ0 (r) , (16b)
0 ≤ X (z) ≤ Xb, (16c)

1

hQW

∫

QW

dz X (z) = Xmean, (16d)

X̃ (|k| > kc) = 0. (16e)

The constraints enforce the envelope wave function to be the
ground state of the single-valley Schrödinger equation (16b), a
restriction of the local Ge concentration within the admissible
range (16c) and a fixed mean Ge content in the QW (16d),
where hQW denotes the thickness of the QW. The last condi-
tion (16e) is a spectral constraint that excludes high frequency
components above the cutoff wave number kc.

To compute the optimized epitaxial profiles, the constrained
optimization problem is first converted into an unconstrained
optimization problem using the Lagrange multiplier method.
The constraints on the Ge concentration profile (16c)–(16d)
are included as penalty terms in the target functional of (16a).
The gradient of the target functional is computed by solv-
ing the adjoint equation, taking the spectral filter according
to (16e) into account. The epitaxial profile X (z) is iteratively
updated using the L-BFGS algorithm [16], until convergence
is reached.
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Fig. 3. Computed values of the deterministic contribution |∆det| and the
disorder induced contribution contribution σ2 = Γ/2 to the intervalley
coupling parameter for the structures in Fig. 2. The inset shows a sketch
of the circular normal distribution of ∆ in the complex plane.

VI. RESULTS

The results of the variational optimization procedure for
different constraint parameter sets and various optimization
goals, i.e., adaptations of Eq. (16a), are shown in Fig. 2.
The variational approach recovered a number of previously
known profiles but also new, enhanced designs. The associated
deterministic and disorder induced contributions to the valley
splitting are plotted in Fig. 3.

Our main result is the modulated wiggle well assisted by
shear strain shown in Fig. 2 (a). The optimization scheme
converges to a Ge concentration profile that has a dominant
spectral component at 2k1, similar to the conventional (long-
period) wiggle well, see (8). In contrast to the conventional
wiggle well, however, the modulated wiggle well is adapted to
the local electric field and yields both an enhanced determin-
istic and a reduced random contribution to the valley splitting,
as can be seen in Fig. 3. Furthermore, the optimized structure
shows a strong electric field dependency enabling enhanced
control and tunability of the valley splitting. The design is
compatible with state-of-the-art fabrication technology [17].

In addition, in Fig. 2 (c), we plot the computed profile
for an intermediate frequency cutoff kc, which prevents the
optimized Ge concentration from oscillating as rapidly as the
structures of Figs. 2(a)–(b). This profile resembles the previ-
ously proposed Ge spike structure [8]. Finally, when imposing
a stringent frequency cutoff, we obtain a QW with uniform
Ge concentration shown in Fig. 2 (d). The comparison in
Fig. 3 reveals that this structure has the smallest deterministic
component and the main contribution to the valley splitting
arises from the disorder induced component.

VII. SUMMARY

We have developed a variational optimization framework
to compute optimal Ge concentration profiles in strained
SiGe quantum wells for maximizing the valley splitting. Our
approach recovers previous heuristic strategies and enables

systematic exploration of the design space under physical
constraints. Our method reproduces known structures such as
the wiggle well and Ge spike and produces improved designs,
notably the modulated wiggle well, which offers enhanced
deterministic splitting, reduced variability, and strong tunabil-
ity. These results are compatible with current epitaxial growth
capabilities and provide a useful design tool for engineering
valley splitting in silicon-based quantum devices.
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