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From CMP Surface Prediction to Defect Detection: 
An AI-Driven Virtual Metrology–TCAD Framework  

 

Yeji Kim  
Semiconductor R&D Center 

Samsung Electronics  

Hwaseong-si, Republic of Korea 
yej2.kim@samsung.com  

(ORCID: 0000-0003-4658-645X) 

Usuk Chae  
Foundry Business 

Samsung Electronics  

Hwaseong-si, Republic of Korea 
usuk.chae@samsung.com  

SeongRyeol Kim  
Semiconductor R&D Center 

Samsung Electronics  

Hwaseong-si, Republic of Korea 
sr75.kim@samsung.com  

Young-Gu Kim  
Foundry Business 

Samsung Electronics  

Hwaseong-si, Republic of Korea 
yg09.kim@samsung.com 

Min-Chul Park  
Semiconductor R&D Center 

Samsung Electronics  

Hwaseong-si, Republic of Korea 
m.c.park@samsung.com 

Byungchul Shin  
Foundry Business 

Samsung Electronics  

Hwaseong-si, Republic of Korea 
bchul.shin@samsung.com  

Yoon-Suk Kim  
Semiconductor R&D Center 

Samsung Electronics  

Hwaseong-si, Republic of Korea 
ys1108.kim@samsung.com  

Joong-Won Jeon  
Foundry Business 

Samsung Electronics  

Hwaseong-si, Republic of Korea 
joongwon.jeon@samsung.com 

Sangyeon Kim  
Semiconductor R&D Center 

Samsung Electronics  

Hwaseong-si, Republic of Korea 
syeon83.kim@samsung.com  

Segab Kwon 
Semiconductor R&D Center 

Samsung Electronics  

Hwaseong-si, Republic of Korea 
sg1987.kwon@samsung.com  

Jae-Hyun Kang  
Foundry Business 

Samsung Electronics  

Hwaseong-si, Republic of Korea 
jh0717.kang@samsung.com  

Dae Sin Kim  
Semiconductor R&D Center 

Samsung Electronics  

Hwaseong-si, Republic of Korea 
daesin.kim@samsung.com  

Abstract—Layout-dependent physico-chemical interactions 

in chemical mechanical polishing (CMP) processes often result 

in surface non-uniformities, which can lead to defects in 

subsequent manufacturing steps. We present an integrated 

approach that unifies large-scale data-driven virtual metrology 

with 3D TCAD simulations, leveraging a neural operator 

specialized in PDE-based modeling for high-resolution and 

high-speed predictions. As a result, the method enables scalable 

analysis of full-chip layouts containing around over two billion 

points within a four-hour window, thereby allowing early-stage 

detection of potential failure risks at the design level. 

Keywords—CMP-induced defect, Neural Operator, VM-

TCAD 

I. INTRODUCTION 

As the stack heights in semiconductor processes decrease 
and process margins shrink, the surface non-uniformities 
introduced by chemical mechanical polishing (CMP) 
processes accumulate and lead to either an increase in the 
number of defects or an increase in the severity of defects in 

subsequent steps (Fig.1). CMP-induced defects induce 
malfunctions of entire chip, so that cause severe reduction in 
semiconductor production yield. [1,2] 

CMP processes can be simulated by Complex partial 
differential equation (PDE)-based models and derive an 
estimate of wafer surface after CMP. However, layout-
dependent factors and real-world variables which cannot be 
accounted for in the PDE limit the accuracy of such 
approaches. [3-5] To address this challenge, data-driven 
virtual metrology using large-scale measurement data has 
emerged, and neural operator (NO)-based architectures are 
have garnered attention for their capability to capture 
comprehensive physical phenomena. However, the prior 
research that combines these two approaches remains 
limitations, requiring calibration and too high computational 
costs to mitigate CMP-induced defects. [6,7] 

This paper proposes an AI-driven metrology-TCAD 
framework for large-area CMP-induced defect analysis. The 
framework includes surface-morphology predictor from

 

Fig. 1. Flow of full 3D Simulation for CMP process and definition of CMP-induced defect index. 



layout inputs via virtual metrology and provides a high-speed 
TCAD surrogate model, applying several light-weighting 
computation technologies and data division skills.  

II. METHODS 

This paper proposes an AI-driven metrology-TCAD 
framework for large-area CMP-induced defect analysis. The 
framework includes surface-morphology We proposes an 
integrated framework that combines Virtual Metrology (VM) 
with a real-time TCAD model to tackle CMP-induced surface 
non-uniformities and subsequent defect prediction, as 
illustrated in Fig. 2. 

First, we adopt a DeepONet [8] as our VM model, 
featuring a NO architecture—shown in Fig. 3(a)—designed to 
capture the underlying PDE dynamics for surface topology 
during CMP processes. A key element of this predictive 
capability is the Response Corrector module, which learns to 
compensate for noise levels unique to each field-of-view 
(FoV). The module plays an essential role in the process of 
integrating and utilizing multi-FoV data, as different 
measurement data have different reference points or offsets 
due to measurement methods, measurement equipment, and 
other noise-related factors. By estimating offset-changes in 
the output for each FoV index based on training data, this 
module substantially enhances the model’s overall accuracy. 
Furthermore, because the model accepts output coordinates as 
inputs, it supports high-resolution smooth surface predictions 
at arbitrary points while maintaining high accuracy as shown 
in Fig. 3(b).  

Second, we employ the 3D TCAD simulation that takes 
the predicted surface morphology and the subsequent process 
mask layout as inputs to model the following process steps and 
detect potential defects. From these simulations, we derive a 
defect index to quantify the severity of CMP-induced failures. 
Figure 1 illustrates this simulation steps, showing how both 
surface topology and subsequent layout patterns are resulted 
to the final structure and defined defect index. To mitigate the 
high computational cost associated with traditional PDE-
based TCAD solvers, we leverage a NO model that accelerates 
the simulation while preserving accuracy. The NO model 
trains TCAD simulation outputs, pairs of defect index and 
layout images which matched to the defect index value, thus 
surrogates the 3D TCAD simulation.  Prior to the execution of 
our framework, it is necessary to execute the TCAD 
simulation for CMP processes and obtain pairs of layout 
images and CMP-induced defect. 

Prediction-acceleration techniques were applied to defect 
prediction phase for high-speed large-area CMP defect 
analysis. There are two main bottlenecks to shorten simulation 
TAT: pre-processing for large layout and large data prediction 
by AI models. Layout rasterization with high-resolution, 
matched to output target resolution, is considered as a primary 
pre-processing step for layout. We applied segmented 
rasterization and prediction from rasterized large image so that 
finish full-chip CMP defect analysis in several days. 

To address potential limitations of purely data-driven 
approaches, we further perform root-cause analysis, by 
Integrated Gradients (IG) analysis on layout, one method of

 

Fig. 2. Two-step AI-Simulation hybrid framework: (1) defect prediction phase, with virtual-metrology (VM) model and real-time process TCAD (RTT) 
surrogate model, and (2) verification and analysis phase. 

 

Fig. 3. Method and results for virtual metrology model: (a) the architecture of virtual metrology model with input of layout image, coordination, and 
identification number (ID) for field of view, (b) high-resolution predictions validated against a synthetic layout, showing minimal performance degradation 
from training, and (c) its image attribution by integrated gradients analysis.



eXplainable AI (XAI)—depicted in Fig. 3(c)—which reveals 
how layout pattern combinations and surrounding features 
influence the predicted surface morphology.[9,10] The 
analysis offers a substantial information for defect-risky 
points, even experienced engineers or traditional analyses 
limit broad and complex layout pattern combination issues.  

III. RESULTS 

The proposed framework was implemented to 3nm logic 
full-chip analysis. We first acquired layout data encompassing 
both active and dummy patterns across all layers pertinent to 
the CMP process. Layout pattern data was furnished as a 
three-dimensional image array with dimension corresponding 
to (number of horizontal pixels, number of vertical pixels, 
number of used layers), extracted from a specified window-
size of the layout. All framework parameters, including 
window-size, image-size, layer classification, and layer 
operation, were optimized according to the chip type. We 
established the optimal window-size at 10um based on L2-
regularization-based feature selection utilizing numeric 
features such as pattern density. Additionally, the image-size 
was determined to be 64 pixels through grid search 
optimization. 

Our virtual metrology model, trained on millions of layout 
patterns and corresponding optical height measurements,  
attained a test accuracy with a coefficient of determination 
(R²) score of 0.76. The 3nm logic full-chip with a 1.2 cm² area, 
yielded 2.5  billion prediction points with discretization at 
2 nm intervals. By leveraging 400 CPU cores in parallel, we 
successfully completed full-chip defect detection in 4 hours. 
To accelerate prediction, we employed gradual-segmentation 
techniques with per-side-2mm- and per-side-400um-size tiles 
on the full-chip layout. 

Prior to executing the model, it is imperative to validate 
our TCAD simulation for the CMP process and defect-index 
that have been defined followed by layer thickness. A total of 
200 sample points, including 100 CMP defects and 100 

defect-free samples, were obtained and simulated. These 
samples were acquired through bright-field (BF) microscopy 
imaging and optical height measurement. The veracity of the 
sample points is challenging to ascertain, necessitating the 
collection of diverse, random true site for validation. The 
simulated defect index values of the sample points are 
represented by red and blue dashed lines in Fig.4(a). It was 
observed that the defect and defect-free samples exhibited 
distinct defect-index distributions with respect to 1. Therefore, 
it was concluded that the utilization of a simulated defect-
index facilitates defect judgement. 

The TCAD-surrogate model demonstrated a test R² score 
of 0.75, trained on a thousand of pairs of layout-pattern and 
corresponding simulated defect-index. The predicted defect-
index values of the sample points are displayed in Fig.4(a) 
using a color-filled bar graphs with solid line. It was 
determined that the distributions of the simulated and 
predicted values exhibit a significant overlap in both under-1 
and over-1 ranges. Critically, the models generalize to other 
chips sharing identical design rules and process technologies 
when trained with defect and defect-free samples. 

The 1.2 cm²-size chip is detected for 200nm-resolution 
CMP defect risk with 400 parallel CPU cores in 4 hours, 
consistent with the virtual metrology model. In contrast, a 
conventional numerical PDE solver require a year for the same 
resolution analysis, thereby demonstrating a 2,283-times 
speedup. (Fig.4(b)) Each 100 um²-size single simulation 
requires a range of 8 to 20 hours with 1 CPU core, although 
each defect index of a single point is finished within several 
seconds. The TCAD-surrogate model facilitates real-time 
prediction of CMP defect-index even for over 1.2 cm² large-
size chips. Predicted height and defect-index map of the full-
chip map shown in Fig.5(a). CMP-defect-risky points, of 
which defect-index is over 1, are matched to the points with 
sharply-slopped height change and it is convincing with layout 
patterns and surrounding topology. (Fig.5(b))  

3D TCAD re-verification was performed on flagged defect  

  

Fig. 4. Three result of each step in the framework: (a) plot of simulated (colorless bar with dashed line) and predicted (color-filled bar with solid line) defect-
index for defect-verified samples, (b) plot of execution time for 3nm logic full-chip CMP simulation. 

 

Fig. 5. Final output of the framework: (a) predicted height (gray) and defect-index (red) map for 3nm logic full-chip, and (b) predicted height (top) and defect 
index (bottom) graph of defect hotspot area from the map. 



hotspots to both validate results and provide process engineers 
with defect-structure visualizations. It complements the 
proposed methodology that does not guarantee perfect 
accuracy despite of the substantial acceleration of TCAD 
simulation. The VM model and the surrogate model integrate 
an image attribution module, thereby enabling root-cause 
layout-pattern analysis of defects. 

IV. CONCLUSION 

We present an integrated powerful framework that unifies 
VM model with a real-time TCAD-surrogate model to tackle 
CMP-induced defects. For PDE-based CMP modeling, we 
adopt an NO architecture for the VM model and TCAD 
simulation, demonstrating robust generalization and high-
resolution capabilities, further enhanced explainability 
through XAI. By combining the predicted surface topology 
with the accelerated TCAD surrogate flow, we achieve over 
2,000× speedup compared to conventional PDE solvers, so 
that complete near real-time defect analysis. Finally, critical 
locations are re-verified via detailed TCAD, and image 
attribution provides layout-level DR insights to reduce CMP 
defects. The framework is valid for any other chip layout 
designed by identical rules and process technologies with 
trained layout. Future research would improve model 
accuracies and generalization, and expand our framework 
usage to other layers or processes.  
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