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Abstract—Accurately predicting surface topography evolution
is essential for manufacturing complex three-dimensional (3D)
semiconductor devices. To overcome the limitations of slow and
costly experimental development cycles, a predictive, physics-
based simulation approach that bridges multiple scales is re-
quired. This paper presents comprehensive multi-scale modeling
approaches that integrate simulations from the atomistic to the
reactor level. At the lowest scale, we use Density Functional
Theory (DFT) and Molecular Dynamics (MD), including machine
learning-enhanced methods, to derive fundamental parameters
like sticking coefficients and sputtering yields. These inform
robust feature-scale models implemented in the open-source
ViennaPS$ simulator, which captures complex surface kinetics by
tracking local properties such as species coverages, passivation
layer thickness, and physical damage. At the highest scale, reactor
simulations provide physically-based boundary conditions, while
surrogate models are developed to efficiently link equipment
settings to process outcomes. The predictive power of the meth-
ods is demonstrated through a calibrated model for selective
SiGe etching that accurately predicts etch profiles for different
device geometries and process conditions. This holistic approach
provides an end-to-end simulation capability, enabling predictive
process optimization and establishing a foundation for future
applications in automated process control and inverse design.

Index Terms—Multi-scale modeling, Semiconductor fabrica-
tion, Process TCAD, Topography simulation, Molecular Dynam-
ics, Plasma etching, PECVD, DTCO.

I. INTRODUCTION

The semiconductor industry is driven by continuous minia-
turization and the development of increasingly complex 3D
device architectures, such as gate-all-around (GAA) tran-
sistors, complementary field-effect transistors (CFETs), and
3D NAND memories [1]. This relentless scaling demands
advanced fabrication techniques capable of achieving high
precision and extreme aspect ratios. Accurately predicting
and controlling surface topography evolution during these
processes is crucial for optimizing manufacturing yield, device
performance, and overall manufacturability [2]. This optimiza-
tion, known as Process/Design Technology Co-Optimization
(PTCO/DTCO), combines process development and circuit
design, ensuring that all aspects are considered together for
optimal outcomes.

Traditional process development often relies on costly and
time-consuming experimental iterations, which limit the full
exploration of the design space. To overcome these challenges,
process and device simulations, commonly referred to as
Technology Computer-Aided Design (TCAD), have become

indispensable tools. Process topography TCAD enables the
prediction of etch and deposition profiles, guiding process
development and significantly reducing the time and cost
associated with in-silicon experiments, potentially shortening
development cycles from months to days [3].

The overall TCAD workflow, from equipment and process
simulation to device characterization and circuit-level analysis,
is depicted in Fig. 1. This integrated approach allows for
comprehensive optimization across different design scales and
stages. However, the complexity of modern semiconductor
processes, involving multiple plasma species and highly sen-
sitive surface interactions, poses significant challenges for
developing generalized and predictive models. Many existing
models depend on empirical fitting against experimental data,
which can limit their applicability to new plasma chemistries
and process conditions due to the difficulty in fully knowing
or reproducing exact experimental conditions.
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Fig. 1. Integrated TCAD workflow spanning from equipment and process
simulations to device modeling and SPICE simulations for circuit design.

This paper presents comprehensive multi-scale modeling
approaches that combine atomistic, feature, and reactor scales
to enable predictive process design and optimization in semi-
conductor fabrication. We demonstrate how applying these
approaches, while utilizing tools like the in-house feature-
scale simulator ViennaPS [4], reduces reliance on costly
experimental iterations, thereby establishing a foundation for
inverse design workflows and real-time equipment analysis
during fabrication.

II. MULTI-SCALE PROCESS MODELING

Our multi-scale modeling approach integrates different lev-
els of physical phenomena, ranging from atomic interactions to

SISPAD 2025 — https://sispad2025.inviteo.fr/



SISPAD 2025, September 24-26, 2025, Grenoble, France

macroscopic reactor behavior, to provide a comprehensive and
accurate simulation of semiconductor fabrication processes, as
illustrated in Fig. 2 and discussed in [5].
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Fig. 2. The multi-scale modeling paradigm in semiconductor TCAD. Simu-
lations range from ab-initio methods at the atomistic level up to continuum
models for heat transport and fluid dynamics at the equipment level.

A. Atomistic Scale: Molecular Dynamics and First-Principles

At the most fundamental level, the interaction of plasma
species with material surfaces is governed by atomic-scale
phenomena. Molecular dynamics (MD) simulations and Den-
sity Functional Theory (DFT) provide crucial insights into
these interactions, which are often inaccessible through exper-
iments. These methods help in understanding surface reactions
such as adsorption, desorption, and sputtering [6].

In reactive ion etching (RIE), MD simulations can be used
to derive angle- and energy-dependent sputtering yields [7],
[8]. Recent work has focused on determining the sputtering
yield for CF; ions on SiOy substrates [9]. By simulating
ion impacts at various energies and angles, a threshold energy
for sputtering (e.g., 8.4 eV for CF§ on SiOs) and an angle-
dependent yield function can be extracted. Atomistic simu-
lations also reveal the formation of a fluorocarbon-rich layer
on the substrate surface, which effectively changes the target
material and physically justifies a lower energy requirement
for sputtering than pure SiO,. These simulations eliminate the
need for empirically fitting critical parameters to experiments,
enhancing the predictive power and robustness of the models.

DFT calculations are instrumental in determining funda-
mental parameters for classical simulations, such as the ad-
sorption energies and sticking coefficients of reactive species.
By mapping the potential energy surface for an etchant
precursor interacting with a substrate, DFT can reveal the
activation energy barriers for key reaction steps like disso-
ciative chemisorption. For example, recent DFT studies have
investigated the chemisorption of methyl fluoride on silicon
nitride surfaces for atomic layer etching [10] and to calculate
the sticking coefficients for silicon- and carbon-containing
species during the growth of silicon carbide (SiC) [11].

Furthermore, large-scale atomistic modeling based on ma-
chine learning molecular dynamics (MLMD) frameworks are
emerging to simulate etching processes, such as the lateral
isotropic selective etching of SiO2/Si stack structures in GAA
FETs using F* radicals. Recent MLMD models have shown

to handle over 600,000 atoms, achieving significant speedups
and improved accuracy compared to classical molecular dy-
namics (CMD) [12]. This approach leverages active learning
strategies to generate datasets for machine learning potential
functions, continuously correcting errors with DFT during the
etching process. The general concept of this MLMD approach,
which links quantum accuracy to large-scale simulations, is
illustrated in Fig. 3.

Fig. 3. Conceptual overview of the machine learning molecular dynamics
(MLMD) workflow. High-accuracy data from small-scale quantum mechanical
calculations (DFT) on various atomic configurations (left) is used to train a
machine learning potential (center). This computationally efficient potential
then enables large-scale, classically-run MD simulations of complex processes
like plasma etching (right) with near-DFT accuracy.

B. Feature Scale: ViennaPS Process Simulator

The insights gained from atomistic simulations are directly
integrated into feature-scale models that simulate the 3D
topography evolution of semiconductor devices. ViennaPS is
an open-source process simulator and emulator developed at
the Institute for Microelectronics, TU Wien, designed for
modeling semiconductor fabrication and operation [4]. The
modular software architecture of ViennaPS is shown in Fig. 4.
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Fig. 4. The software architecture of ViennaPS. It is built on a modular
framework including components for Level Set (ViennalLS) and Cell Set
(ViennaCS) methods, and a ray tracer (ViennaRay) with support for both
CPU (Embree) and GPU (NVIDIA Optix™) acceleration.

ViennaPS utilizes the Level-Set (LS) and Cell-Set (CS)
methods for surface and volume representation and evolution
[13]. The LS represents surfaces as the zero-level set of a
higher-dimensional function, allowing for seamless handling
of complex topological changes such as merging and splitting
[14]. For computational efficiency, a narrow-band or sparse-
field level set is stored instead of the full domain. The CS, on
the other hand, discretizes the domain into voxels, which can
store material information and interface properties.

The physical models in ViennaPS calculate local surface
velocities by modeling the interactions of incoming particles
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with the surface [14]. This is typically achieved by solving
surface-site balance equations that track one or more properties
stored locally on the surface. These properties can range from
simple species coverages, as used in models for SF¢/O, or
CF,4/0, plasma etching, to the thickness of passivation films
[15] or the extent of material damage [16]. The predictive
power of this physics-based approach is demonstrated in Fig. 5
for the selective etching of SiGe. A model for CF4/O, plasma
is calibrated against a specific experimental condition. The
same model is then used to accurately predict the etch profile
for a different geometry with a smaller critical dimension, val-
idating its physical basis for capturing complex microloading
effects [17].
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Fig. 5. Demonstration of the predictive capability of the calibrated CF4/O;
model for selective SiGe etching. The simulation results (red lines) are
overlaid on experimental TEM images. (a) The model is first calibrated to
a multi-pillar structure with a 100 nm critical dimension (CD) at 20 mTorr.
The same calibrated model is then used to accurately predict the etch profile
for (b) a different geometry with a 50 nm CD [17].

Beyond species coverages, the framework can store other
physical properties to link sequential process steps. One ex-
ample is the modeling of advanced deep reactive ion etching
(DRIE) techniques like the polymer-free CORE process [18].
The CORE process avoids the environmental concerns and
process drift associated with fluorocarbon-based Bosch etching
by using only SFs/O, plasmas in four cyclic steps: Clear,
Oxidize, Remove, and Etch. The process uses an O, plasma
in the ”Oxidize” step to grow a thin, self-limiting oxide layer
for sidewall passivation. Our model handles this efficiently
by tracking the oxide thickness as a scalar surface property
rather than as a computationally expensive geometric layer
[15]. This stored oxide is then directionally removed from the
feature bottom during the high-bias "Remove” step, allowing
the subsequent “Etch” step to proceed anisotropically. This
modeling approach accurately reproduces characteristic fea-
tures like sidewall scalloping and allows for the optimization
of such advanced, environmentally friendly etching processes.

To improve computational efficiency, especially for complex
geometries and large domains, ViennaPS leverages GPU-
accelerated ray tracing using NVIDIA Optix™. This sig-
nificantly speeds up flux calculations, which are a major
component of the simulation [19].

C. Reactor Scale: Plasma Simulations and Surrogate Models

The feature-scale models require accurate boundary con-
ditions from the plasma environment. Reactor-scale plasma

simulations, often performed using tools like the Hybrid
Plasma Equipment Model (HPEM) from the University of
Michigan, provide these spatially resolved ion and neutral flux
distributions, as well as ion energy and angular distributions
(IEADs/NEADs) [20]. The HPEM framework contains several
interacting modules to solve for the plasma chemistry, electro-
magnetics, and fluid kinetics, allowing it to simulate various
reactor types such as Inductively Coupled Plasmas (ICP).
Fig. 6 shows key outputs from an HPEM simulation of
an Ar/O; inductively coupled plasma. The simulated process
conditions, a 13.56 MHz coil power of 700 W, an RF substrate
bias of 500 W, a total gas flow of 30 sccm, and a gas pressure
of 45mTorr with an Ar/O; ratio of 0.1/0.9, are designed to
generate a highly energetic plasma. The ion energy and angular
distribution (IEAD) for O" ions (left) is highly directional,
arriving at the wafer at near-normal incidence. The correspond-
ing ion energy distribution function (IEDF) (right) further
reveals the distinct effect of the high substrate bias, displaying
a broad and complex structure with significant ion populations
extending to energies above 200eV. This detailed, physically-
based data on ion directionality and energy is precisely what
is required as input for high-fidelity feature-scale simulations

of ion-driven processes.
300

250k 0015 F

200

= 0.01F

nergy Distribution(eV"')

ENERGY (EV)
g
T

g
T
E

20.005
=]

1

50

o~ . 6 — 0
THETA (DEG)
Fig. 6. Example simulation results from HPEM for an Ar/O; plasma under
high substrate bias. Left: The Ion Energy and Angular Distribution (IEAD)
for O* shows a highly directional flux. Right: The Ion Energy Distribution
Function (IEDF) reveals a broad energy range with a bimodal structure,
characteristic of RF-biased plasmas.
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To further improve efficiency, especially for DTCO applica-
tions where rapid feedback is crucial, machine learning-based
surrogate models can be developed [21]. These surrogate
models are trained on data from detailed reactor simulations
and/or experimental measurements to predict plasma parame-
ters (e.g., particle fluxes, IEADs) as a function of equipment
inputs (e.g., coil power, gas flow rate, pressure, bias voltage).
This allows to capture complex reactor behavior without the
computational cost of running full-scale plasma simulations
for every design iteration. Multi-variable spline interpolation
models, for example, have been demonstrated to generate these
surrogate models effectively, as depicted in Fig. 7.

For plasma-enhanced chemical vapor deposition (PECVD),
we work with hybrid datasets consisting of both real pro-
duction data (e.g., 39 points) and simulation data (e.g., 1000
points from a validated physical model) to train ML models
[22]. The input features for these models typically include gas
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Fig. 7. Workflow for creating (gray arrows) and using (green arrows) a
surrogate model to link equipment and feature scales. Reactor simulations are
performed for a range of equipment input parameters to generate a database of
resulting particle fluxes. A fast surrogate is trained on this data to predict the
fluxes from the equipment settings, bypassing the need for computationally
expensive reactor simulations.

flow rates (SiH4, NH3, N2, Hs), process conditions (RF power,
chamber pressure, deposition time), and equipment parameters
(electrode spacing). The surrogate model, when built using
SHAP (Shapley Additive exPlanations), can provide inter-
pretability by quantifying the impact of various input features
on deposition rates [22]. This not only accelerates process
tuning but also offers insights into the underlying physics,
which can be valuable for real-time DTCO. For example,
SHAP analysis on a CatBoost model for PECVD deposition
rate prediction showed that gas flow is the most influential
factor (60% of total contribution), with SiH, and NH3 flows
being dominant. Higher chamber pressure and RF power also
positively contribute to the deposition rate due to increased
plasma density.

D. Automated Calibration and Optimization

To ensure model fidelity and reduce reliance on manual
tuning, experimental SEM/TEM images are used for auto-
mated model calibration. This involves comparing simulated
profiles with experimental images and iteratively adjusting
model parameters (e.g., reaction rates, material-specific param-
eters) to minimize the difference between the two [23]. When
using ViennaPS, the signed distance function (SDF) can be
used to quantify these differences, and an optimizer can then
adjust parameters to reduce the errors [24]. This automated
tuning allows for rapid model calibration and continuous
improvement of predictive capabilities. Fig. 8 illustrates this
automated workflow, where the difference between a target
experimental profile and a simulated profile is minimized by
an optimizer that iteratively adjusts model parameters.

III. CONCLUSION

We have presented a comprehensive multi-scale model-
ing approach for semiconductor fabrication that spans from
atomistic to reactor scales, providing an invaluable tool for
predictive process design and optimization. By integrating
molecular dynamics, feature-scale simulations with ViennaPS,
and reactor-scale plasma models, we enable a holistic under-
standing and control over complex manufacturing processes.
This integrated modeling strategy is critical for overcoming
the challenges of continued miniaturization and increased use
of the vertical dimension in semiconductor manufacturing.
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Fig. 8. The automated calibration loop. (0) A 2D SEM image is converted
to a contour and then to an SDF representation of the target geometry. (1) A
set of model parameters is selected for simulation. (2) ViennaPS generates a
corresponding simulated geometry and its SDF. (3) The difference between the
target and simulated SDFs is calculated to quantify geometric mismatch. (4)
This error metric is fed back into a gradient-free optimizer, which proposes a
new set of parameters for the next iteration. This loop continues until optimal
agreement is achieved between simulation and experiment.
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