
Solving the Bethe-Salpeter Equation in the Nonequilibrium
Green’s Function Formalism

Jiang Cao
Integrated Systems Laboratory

ETH Zurich
Zurich, Switzerland
jiacao@iis.ee.ethz.ch

Nicolas Vetsch
Integrated Systems Laboratory

ETH Zurich
Zurich, Switzerland

vetsch@

Vincent Maillou
Integrated Systems Laboratory

ETH Zurich
Zurich, Switzerland

vmaillou@iis.ee.ethz.ch

Anders Winka
Integrated Systems Laboratory

ETH Zurich
Zurich, Switzerland

awinka@iis.ee.ethz.ch

Alexander Maeder
Integrated Systems Laboratory

ETH Zurich
Zurich, Switzerland

almaeder@iis.ee.ethz.ch

Alexandros Nikolaos Ziogas
Integrated Systems Laboratory

ETH Zurich
Zurich, Switzerland

alziogas@iis.ee.ethz.ch

Mathieu Luisier
Integrated Systems Laboratory

ETH Zurich
Zurich, Switzerland

mluisier@iis.ee.ethz.ch

Abstract—Exciton-dominated optical responses have been ob-
served in low-dimensional materials, opening up new avenues
to realize high-speed, high-responsivity photo-detectors with low
dark currents. To provide design guidelines for such excitonic
devices, we present an ab initio computational framework for
the Bethe-Salpeter equation (BSE) built on top of our previous
NEGF-GW solver. We showcase its capability for a graphene
nano-ribbon (GNR) photodiode containing 840 carbon atoms,
uncovering the quantum dynamics of photo-excitation and exci-
ton transport ultra-scaled nanostructures.

Index Terms—Quantum transport, photo-detector, exciton.

I. INTRODUCTION

Atomically precise bottom-up fabrication of graphene nano-
ribbons (GNRs) has been recently demonstrated [1]. Unlike
pristine graphene, which is gapless, armchair GNRs (AGNRs)
exhibit semiconducting behavior, with a bandgap that varies
systematically with ribbon width. This makes such structures
particularly attractive for application such as field-effect tran-
sistors, photodetectors, and light-emitting devices. As device
dimensions shrink into a few atoms wide, quantum confine-
ment and reduced dielectric screening significantly enhance
many-body effects. These one-dimensional (1-D) systems are
expected to display pronounced excitonic effects that can be
leveraged to realize photo-detectors with high responsivity,
short response times, and operating under low electric fields.

Excitons are neutral, strongly correlated electron-hole pairs,
as illustrated in Fig. 1. To accurately model these phenomena,
it is necessary to go beyond single-particle approaches such as
tight-binding or standard density functional theory (DFT) by
including electron-electron (e-e) interactions. Applying GW
corrections on the DFT leads to quasiparticle (QP) bandgap
usually in good agreement with experiment. To capture exci-
tonic resonances in the optical absorption spectrum and the
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Fig. 1. Illustration of electron-electron (e-e) interactions and corresponding
Feymann diagrams describing the Dyson equations for the GW correction
and BSE.

electron energy loss spectrum (EELS), methods that explicitly
include electron-hole interactions – e.g., the Bethe–Salpeter
equation (BSE) on top of GW – are essential [2].

Several software packages, such as BerkleyGW [3], WEST
[4], or the DFT code VASP [5], can solve the BSE on top
of GW based on a plane-wave basis, with the plasmon-
pole model or the full-frequency screening. Limited by the
computational burden, the GW correction is usually done in
single-shot (G0W0) or partially self-consistently (GW0). The
BSE takes the form of an eigenvalue problem for a two-particle
effective Hamiltonian. The Tamm–Dancoff approximation is
commonly imposed, which decouples the anti-resonant nega-
tive frequencies from the resonant positive frequencies, thus
reducing the system size by half. The widely used VASP code
conveniently integrates DFT, GW , and BSE capabilities within
one framework. The WEST code is designed for large-scale
GW calculations on thousands of atoms. It uses projective di-
electric eigendecomposition (PDEP) to avoid explicit dielectric
matrix storage of the empty states. A GPU-accelerated solution



of BSE has only recently been implemented in the WEST code
for more than 1700 atoms [4].

The BSE is computationally very expensive, since it in-
volves electron-hole pairs. Hence, the dimension of the BSE
is approximately NBSE = Nc×Nv×Nk, where Nc (Nv) is the
number of conduction (valence) bands and Nk the number of k
points. If the BSE matrix is treated as dense, then the memory
scales as O(N2

BSE), while the computation scales as O(N3
BSE)

using full diagonalization. Practically, iterative solvers are used
to reduce the cost when considering a few excitons.

Notably, none of the aforementioned existing codes can treat
the BSE in devices driven out-of-equilibrium. They therefore
fail at capturing, for example, the dissociation of excitons by
an external voltage. For device-relevant system sizes, semi-
classical models with rate equations are often employed to
balance computational efficiency with physical fidelity. How-
ever, free (empirical) parameters are needed to fit experimental
measurements. To shed light on exciton transport from first
principles, we present here an extension of our previous device
simulator [6], [7] capable of solving the NEGF-GW -BSE.

II. METHOD

In device simulation, a real-space approach is more suitable
than a plane-wave (PW) representation. We thus convert PW-
based DFT calculation into maximally localized Wannier func-
tions (MLWF), obtaining a tight-binding-like lattice-periodic
Hamiltonian HMLWF, together with the associated Coulomb
matrix VMLWF. Then, we construct the device Hamiltonian H
and Coulomb matrix V by scaling up HMLWF and VMLWF.
These are the only inputs to our quantum transport solver. The
NEGF-GW -BSE calculation workflow is described in Fig. 2.

In the first iteration, we follow Hedin’s pentagon, ignoring
the vertex contribution. This is the so-called GW approxima-
tion [8]. We successively compute the polarization P as

P (12) = −iG(12)G(21), (1)

where G is the electron Green’s function, while 1 and 2 are
short-hand notation of space-time coordinates. This allows
us to include dynamical effects into the dielectric screening.
The Green’s function of the screened Coulomb interaction is
defined as

W (12) = V (12) +

∫
d(34)V (13)P (34)W (42). (2)

By combining G and W , we obtain the self-energy Σ,

Σ(12) = iG(12)W (12), (3)

which also gives the name of this approximation. We solve
these GW equations in the Keldysh’s non-equilibrium Green’s
function (NEGF) formalism, meaning that we need to solve
the retarded, lesser and greater components of each Green’s
Function. These equations are defined more explicitly in our
previous work [7].

In the second iteration, we enter the BSE solver. The
central quantity is the two-electron correlation function

Fig. 2. Simulation workflow of NEGF+GW+BSE.

Fig. 3. Relationship between the G and L0 matrices and their sparsity
patterns.

L(12; 34), which is a Green’s Function of 4 space-time coor-
dinates. The non-interacting version can be simply constructed
from the single-electron Green’s function L0(12; 34) =
G(13)G(42). The polarization P is linked with L through
P (12) = L(11; 22). Another quantity is the electron-
hole interaction kernel K(12, 34), which includes a di-
rect (Kd(12; 34) = −W (12)δ(13)δ(24)) and exchange
(Kx(12; 34) = V (13)δ(12)δ(34)) term. The BSE is written
in the integral form as Dyson equation

L(12; 34) = L0(12; 34)+

∫
d(5678)L0(12; 56)K(56; 78)L(78; 34).

(4)
From L, we can extract the macroscopic dielectric function
εM , which is an important linear-response quantity related to
the optical absorption spectrum. We can also compute the self-
energy more accurately

ΣBSE(12) = i

∫
d(34)G(13)W (14)Γ(34; 2)d(34), (5)

where Γ is the vertex function and Γ(34; 2) = L(34; 22).
ΣBSE includes the vertex correction in Hedin’s pentagon
[2], thus accounting for correlation effects beyond the GW
approximation. Then, we recalculate the Green’s function G
and iterate this loop. In this work, we stopped the calculation
at this point due to the associated high computational intensity,
but the self-consistent solution can be obtained by iterating the
procedure until convergence.

Solving the BSE for a nano-device rapidly becomes pro-
hibitively expensive due to the aforementioned unfavorable
scaling. We adopt a cutoff truncation on the electron-electron



Fig. 4. Data distribution flow in our massively parallel BSE solver. P0 and P1 indicate processes. E is energy.

(e-e) interactions, which is motivated by their fast decay due
to screening. This leads to a banded sparse G matrix of size N
and bandwidth Ndiag, as shown in Fig. 3. We represent the 4-
D tensors in BSE as matrices by combining and flattening the
first two and last two dimensions. As indicated in Fig. 3, after
applying the cutoff, L0 becomes highly sparse. We compute
the sparsity pattern of BSE matrices based on the G matrix
sparsity and memorize this information. Motivated by the
relationship between P and L, and the Kd and Kx terms in
K, we arrange the L0 and L matrices into an exchange and

direct part. L =

(
Lxx Lxd
Ldx Ldd

)
, where the exchange part is

defined by Lxx = Lij,klδijδkl, similarly to Kx. The exchange
part directly gives the (non-)interacting polarization since, by
definition, Pij = −iLii,jj . Therefore, we can selectively solve
for the entries of Lxx and Ldx to obtain P and the vertex Γ,
and avoid computing and storing the Ldd and Lxd. The Lxx
term is of size N , thus orders of magnitude smaller than the
Ldd term, which is of size N × (N − 1), depicted in Fig. 3.

This permutation results in a compressed banded arrowhead
(BA) matrix of bandwidth ≈ N2

diag, where Ndiag is the
bandwidth of G. All the zero entries of L0 are permuted
to the bottom right corner. The tip block on the top left
corner corresponds to Lxx. To efficiently solve (4), we apply
the recursive Green’s function (RGF) algorithm, after special
generalization for BA matrices [9]. The forward pass starts
from the tail of the arrow and moves towards the tip. If we
only need the tip block to compute P , then we can even stop
at the end of the forward pass. If we need the vertex Γ, the
backward pass is also needed to produce these entries. Such
a selected solve approach reduces the complexity of the BSE
calculation from O(N6) for dense matrices to O(N ×N5

diag)
blocked BA ones.

Another major bottleneck lies in the computation of the non-
interacting L0 before solving the BSE. L0 is obtained from
an outer (Kronecker) product in the spatial coordinates and a
correlation through energy. We apply the convolution theorem
and transform the correlation into element-wise product in the
Fourier space of energy, exploiting FFT for that purpose. This
results in O(NE log(NE)) complexity rather than O(N2

E),
where NE is the number of energies.

Due to the large number of non-zeros in L0, we need
to efficiently distribute its data and computation workload
across multiple computing units. The data distribution flow

Fig. 5. Macroscopic dielectric function of the considered AGNR, as produced
by VASP and by our solver (inset: lowest two exciton state wavefunctions).

Fig. 6. Schematic of an AGNR photo-detector and physical processes involved
in it.

is schematized in Fig. 4.

III. RESULTS

An AGNR-7 of length L=25.8 nm and containing 840
carbon atoms is considered as test example. The procedure
starts with a PW DFT calculation of a representative unit cell
made of 14 carbon atoms with edge passivation by hydrogen
using the VASP code [5]. The results are converted into a set
of MLWFs with Wannier90 [10] to construct the device H
and V .

First, we compute the imaginary part of the macroscopic
dielectric function (ε2) with our implementation under flat-
band equilibrium conditions and compare our result with a



Fig. 7. (a) Local density-of-state of the simulated AGNR-7 when a linear potential drop is assumed. (b) Current density spectrum in the leads. (c) Photo-current
vs. photon energy.

VASP G0W0 + BSE calculation in Fig. 5. Good agreement
between both curves is achieved. ε2 is proportional to the
optical absorption. We observe two characteristic peaks below
the GW QP bandgap, which originate from the excitonic reso-
nances due to bound electron-hole pairs. The VASP ε2 is over-
all slightly blue shifted with respect to our implementation.
This comes from the difference in the QP bandgap. The PW
basis used in VASP includes more bands than MLWFs, leading
to a more accurate description of screening. However, the
important excitonic resonances are correctly predicted with our
implementation based on MLWFs, at a lower computational
cost than VASP. The wavefunctions of the two lowest-energy
excitonic states are computed and plotted together with the
atomic structure in the inset. The second exciton state is more
broader than the lowest one, as expected.

Next, a small linear potential drop and monochromatic
illumination are applied to the AGNR-7 of length L=25.8 nm
from before, as illustrated in Fig. 6. The optical absorption
results in the generation of excitons. These excitons diffuse
along the AGNR and dissociate into free electrons and holes
under electric field, or annihilate without generating current.
The local density-of-states (LDOS) accounting for the e-e
interaction is plotted in Fig. 7(a). A band gap of 2.4 eV can be
identified from the LDOS, which is larger than the PBE value
and is close to the QP value obtained from VASP G0W0 cal-
culations (2.42 eV). In addition, the energy difference between
the first and second valence bands increases, consistent with
previous report [1]. The energy spectrum of the photo-current
collected at the left and right contact is displayed in Fig. 7(b)
for photons with energy below the QP band gap. Non-zero
spectral current density is observed in the QP bandgap. The
band edge profiles along the AGNR are indicated by the two
dashed lines in the figure, which are marked as CB (conduction
band) and VB (valence band). This demonstrates the creation
and dissociation of excitons that generate free carriers. Finally,
we sweep the photon energy and record the photo-currents,
as reported in Fig. 7(c). We observe current peaks at photon
energies around 2 eV, below the QP bandgap and close to the
second exciton resonance in the ε2 shown in Fig. 5. The first
exciton state has a larger binding energy, making it difficult
to dissociate into free carriers.

IV. CONCLUSION

We developed an ab initio NEGF-GW -BSE solver and ap-
plied it to an AGNR photo-detector. In equilibrium (flat-band
condition), we demonstrated good agreement with reference
calculations from VASP and highlighted the presence of ex-
citon transport and photo-current with below-bandgap photo-
excitation in non-equilibrium. Our work opens the door for
accurate investigations of devices exhibiting strong excitonic
effects.
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R. Fasel, X. Feng, K. Müllen, S. Wang, D. Prezzi, A. Ferretti, A. Ruini,
E. Molinari, and P. Ruffieux, “Exciton-dominated optical response of
ultra-narrow graphene nanoribbons,” Nature Communications, vol. 5,
no. 1, p. 4253, 2014.

[2] X. Blase, I. Duchemin, and D. Jacquemin, “The bethe–salpeter equation
in chemistry: relations with td-dft, applications and challenges,” Chem.
Soc. Rev., vol. 47, pp. 1022–1043, 2018.

[3] M. Rohlfing and S. G. Louie, “Electron-hole excitations and optical
spectra from first principles,” Phys. Rev. B, vol. 62, pp. 4927–4944,
Aug 2000.

[4] V. W.-z. Yu, Y. Jin, G. Galli, and M. Govoni, “Gpu-accelerated solution
of the bethe–salpeter equation for large and heterogeneous systems,”
Journal of Chemical Theory and Computation, vol. 20, pp. 10899–
10911, 12 2024.

[5] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio
total-energy calculations using a plane-wave basis set,” Phys. Rev. B,
vol. 54, pp. 11169–11186, Oct 1996.

[6] J. Cao, A. Ziogas, L. Deuschle, Q. Ding, N. Vetsch, A. Winka, V. Mail-
lou, A. Maeder, and M. Luisier, “Ab initio quantum transport simulations
of inas avalanche photo-diodes within the gw approximation,” in 2023
International Electron Devices Meeting (IEDM), pp. 1–4, 2023.

[7] L. Deuschle, J. Cao, A. N. Ziogas, A. Winka, A. Maeder, N. Vetsch,
and M. Luisier, “Electron-electron interactions in device simulation via
nonequilibrium green’s functions and the gw approximation,” Phys. Rev.
B, vol. 111, p. 195421, May 2025.

[8] M. Shishkin and G. Kresse, “Implementation and performance of the
frequency-dependent gw method within the paw framework,” Phys. Rev.
B, vol. 74, p. 035101, Jul 2006.

[9] V. Maillou, L. Gaedke-Merzhaeuser, A. N. Ziogas, O. Schenk, and
M. Luisier, “Serinv: A scalable library for the selected inversion of
block-tridiagonal with arrowhead matrices,” 2025.

[10] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gib-
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