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Abstract—Ab-initio molecular dynamics (AIMD) is widely
adopted for its high accuracy in semiconductor device and
materials modeling, as it captures atomistic defect dynamics,
interface phenomena, and thermo-mechanical behavior. However,
its substantial computational cost hinders its application to large-
scale or long-timescale simulations. To overcome this limitation,
we present Neural Network Hamiltonian Molecular Dynamics,
which employs a graph neural network to model the density
functional theory Hamiltonian and updates atomic positions
via forces from energy gradients. For copper and palladium
systems, our method demonstrates good agreement with AIMD
in temperature evolution, mean squared displacements, radial
distribution functions, angular distribution functions, and density
of states, while achieving faster performance. Our framework
not only enables large-scale molecular dynamics simulations,
but also establishes a novel approach to atomistic modeling by
incorporating neural network-derived Hamiltonians.

Index Terms—molecular dynamics, density functional theory,
Hamiltonian, and machine learning

I. INTRODUCTION

Molecular dynamics (MD) simulations play a pivotal role
in advancing research across a wide range of scientific dis-
ciplines, including chemistry, physics, and materials science.
In particular, their utility has become increasingly important
in device modeling, where atomistic insights into amorphous
structures, interfacial phenomena, and thermal evolution are
essential for accurately capturing the behavior of materials at
the nanoscale [1]–[3]. While ab initio MD methods offer high
predictive accuracy by explicitly solving for the electronic
structure, their significant computational cost poses a major
limitation for large-scale or long-time simulations, especially
when compared to classical MD approaches [4]. To address
this issue, tight-binding molecular dynamics (TBMD) has been
proposed as a compromise, offering reduced computational
demands [5]. However, TBMD suffers from inherent limi-
tations in terms of accuracy and transferability, particularly
for systems with complex bonding environments or varying
chemical compositions.

In recent years, the application of graph neural networks
in materials science has progressed considerably, providing
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Fig. 1. The overall structure of our method. Atomic coordinates are fed into
a neural network that computes forces, and these computed forces are then
used by the Verlet algorithm to calculate subsequent atomic positions.

effective tools for addressing diverse challenges in computa-
tional materials research [6]. Among these efforts, modeling
density functional theory (DFT) Hamiltonians with neural
networks has shown potential for maintaining reasonable
accuracy while reducing computational cost [7]–[9]. In this
study, we introduce a neural network Hamiltonian molecular
dynamics (NNH-MD) framework that enables computationally
efficient MD simulations by learning the DFT Hamiltonian and
computing atomic forces as energy gradients. The proposed
approach allows for the propagation of atomic trajectories
with accuracy comparable to ab-initio MD, while offering a
substantial reduction in computational overhead. Benchmark
results demonstrate that NNH-MD yields reliable physical pre-
dictions across key descriptors, including temperature evolu-
tion, radial distribution functions (RDFs), angular distribution
functions (ADFs), mean squared displacements (MSDs), and
electronic density of states (DOS), indicating its effectiveness
for large-scale atomistic simulations.

II. METHOD

A. Neural Netwrok Hamiltonian

Message-passing neural networks (MPNNs) provide a ro-
bust framework for representing molecules and materials as
graphs, enabling effective modeling of complex interatomic



Fig. 2. Element-wise error between DFT Hamiltonian and neural network
Hamiltonian matrix elements, evaluated over 150 configurations for copper
(left) and 100 configurations for palladium (right). Each panel shows the
absolute error between corresponding matrix elements, with orbital indices
labeled on both axes. The MAE for both cases is approximately 1 meV.

interactions. We use DeepH-E3 [10], a state-of-the-art MPNN-
based model, to learn the DFT Hamiltonian. To enhance the
physical consistency of the model and improve the reliability
of atomic force predictions, we introduce a composite loss
function that includes both the Hamiltonian and atomic forces
during training. Specifically, the total loss is formulated as
a weighted sum of the Hamiltonian loss and the force loss,
expressed as:

Ltotal = α · LH + β · LF, (1)

where LH and LF denote the losses associated with the
Hamiltonian and atomic forces, respectively, and α and β
are weighting factors that balance their contributions during
optimization.

The atomic forces are computed as the negative gradients
of the total energy with respect to atomic positions:

F = −∂E
∂R

= − ∂

∂R

∑

i

fiϵi, (2)

where fi is the Fermi–Dirac occupation for the ith eigenvalue
ϵi of the predicted Hamiltonian, and R denotes the atomic
positions. In practice, this differentiation is performed using
the PyTorch autograd framework [11], ensuring consistency
between the learned Hamiltonian and the computed forces.

B. Molecular dynamics

Atomic forces, once obtained from the neural network
Hamiltonian, are used to advance the atomic positions at each
timestep (∆t) according to the Verlet integration scheme com-
bined with the Nosé–Hoover thermostat (Fig. 1), as follows:

R(t+∆t) = 2R(t)β −R(t−∆t)αβ +
F(t)

m
(∆t)2β, (3)

where
α = 1− 0.5 ξ(t)∆t, (4)

Fig. 3. Comparison of band structures obtained from OpenMX and NNH for
64-atom systems. Results for both cases are shown, with OpenMX depicted
as a solid red line and NNH as a dashed black line. (Left) Band structure for
copper; (right) band structure for palladium.

β =
1

1 + 0.5 ξ(t)∆t
, (5)

and ξ(t) is the friction coefficient determined by the
Nosé–Hoover thermostat. The friction coefficient is then up-
dated as

ξ(t) =
3η(t)− 4η(t−∆t) + η(t− 2∆t)

2∆t
. (6)

The time evolution of the Nosé–Hoover thermostat variable
η(t) is given by

η(t+∆t) = 2η(t)− η(t−∆t) +
2

Q
[K(t)−K0] (∆t)

2, (7)

where Q is the thermostat mass, K(t) is the instantaneous ki-
netic energy, and K0 is the target kinetic energy corresponding
to the desired temperature. Initial velocities are sampled from
the Maxwell–Boltzmann distribution at the target temperature,
and thermal equilibration is maintained by the thermostat
throughout the simulation.

III. RESULTS

A total of 750 configurations for copper and 600 for
palladium, each with 64 atoms, were generated by applying
random displacements of up to 25% and 20% of the lattice
constant, respectively. DFT calculations were performed using
OpenMX [12], which employs norm-conserving pseudopo-
tentials [13], the generalized gradient approximation (GGA),
and the Perdew–Burke–Ernzerhof (PBE) exchange-correlation
functional [14]. Based on this dataset, an NNH model was
trained and validated, demonstrating reliable reproduction of
the DFT Hamiltonian elements and corresponding band struc-
tures. For both copper and palladium, the mean absolute error
(MAE) of the Hamiltonian elements predicted by the NNH
model with respect to the DFT reference remains below 5 meV
for all orbital pairs. (Fig. 2) The electronic band structures
computed using the NNH Hamiltonian closely match the DFT
results, with MAE of 12.0 meV for copper and 14.3 meV for
palladium. (Fig. 3).



Fig. 4. Comparison of temperature evolution obtained from OpenMX-MD
(solid red line) and NNH-MD (dashed black line) for 64-atom systems at 300
K. (Left) Results for copper; (right) results for palladium.

Fig. 5. Time evolution of the mean squared displacement (MSD) at 300 K,
comparing OpenMX-MD (solid red line) and NNH-MD (dashed black line).
(Left) Results for 64-atom copper; (right) results for 216-atom palladium.

We performed simulations at 300 K for copper using a 64-
atom supercell, which matches the system size used during
training NNH, and for palladium using a larger 216-atom
supercell to evaluate scalability. The results for palladium were
specifically analyzed to assess the applicability of NNH-MD
to larger systems. For validation, these results were compared
with ab-initio MD simulations carried out using OpenMX and
a 3×3×3 k-point grid. Temperature evolution, which directly
reflects energy conservation and system equilibration, was first
examined. As shown in Fig. 4, the results from NNH-MD sim-
ilarly followed those from ab-initio MD, demonstrating that
both methods yield consistent kinetic energy evolution under
the same simulation conditions. This consistency establishes a
reliable foundation for subsequent analyses of structural and
dynamical properties, including RDFs, ADFs, and MSDs.

The MSD, which quantifies how far atoms deviate from
their original positions over time, exhibited an oscillatory be-
havior in both approaches, indicating that the atomic motions
and vibrational amplitudes are in good agreement at 300 K
(Fig. 5). The initial fluctuations in temperature observed in

Fig. 6. RDFs at 500 fs obtained from OpenMX-MD (solid red line) and
NNH-MD (dashed black line), showing how particle density varies as a
function of distance from a reference particle. (Left) Comparison for a system
of 64 Cu atoms. (Right) Comparison for a system of 216 Pd atoms.

Fig. 7. ADFs at 500 fs obtained from OpenMX-MD (solid red line) and
NNH-MD (dashed black line), showing the distribution of bond angles formed
between neighboring atoms. (Left) Comparison for a system of 64 copper
atoms. (Right) Comparison for a system of 216 palladium atoms.

both simulations gradually diminished, ultimately resulting in
steady-state dynamics characteristic of the solid phase.

Analysis of the RDF revealed that NNH-MD captures the
main features of atomic arrangement observed in ab-initio MD,
as evidenced by nearly coinciding peak positions and inten-
sities (Fig. 6). Furthermore, the ADF measurements showed
that the bond angle environments generated by NNH-MD align
well with those obtained from ab-initio MD, suggesting that
the key aspects of local bonding structures are maintained
(Fig. 7). Taken together, these findings suggest that, while
some quantitative differences remain, NNH-MD is generally
able to construct spatial atomic configurations that are in
reasonable agreement with those generated by ab-initio MD,
supporting its potential for qualitatively capturing the key
structural features of the system.

The DOS obtained from NNH-MD shows a good overall
match with that from ab-initio MD, indicating that the NNH
accurately reproduces the electronic structure of the system.



Fig. 8. Density of states (DOS) at 500 fs computed at the Γ-point with
OpenMX-MD (solid red line) and NNH-MD (dashed black line), the latter
based on NN-driven MD trajectories and a Hamiltonian predicted by the neural
network. (Left) 64 copper atoms. (Right) 216 palladium atoms.

This agreement further supports the reliability of NNH-MD
in predicting both structural and electronic properties (Fig.
8), underscoring its suitability for charge transport and other
semiconductor device simulations.

NNH-MD demonstrates more than a tenfold speedup com-
pared to ab-initio MD for both Pd and Cu systems with 216
atoms, as shown in Fig. 9. Notably, ab-initio MD compu-
tation time tends to increase roughly quadratically with the
number of atoms, whereas NNH-MD shows a near-linear
scaling behavior. This indicates that NNH-MD can serve as
a significantly more efficient tool for simulations involving
larger atomic systems.

IV. CONCLUSION

We have presented a neural network Hamiltonian molecular
dynamics (NNH-MD) framework that efficiently learns the
DFT Hamiltonian using a graph neural network and com-
putes atomic forces via autograd differentiation. Validation on
copper and palladium systems demonstrates that NNH-MD
reliably reproduces key structural and electronic properties
including temperature evolution, RDFs, ADFs, MSDs, and
DOS with accuracy comparable to conventional ab-initio MD.
Importantly, NNH-MD achieves more than an order of magni-
tude speedup for systems of several hundred atoms, with near-
linear scaling in computational cost compared to the quadratic
scaling observed in ab-initio MD. These advantages position
NNH-MD as a promising tool for large-scale atomistic sim-
ulations and device-scale semiconductor modeling, enabling
exploration of complex material behaviors beyond the reach
of traditional methods.
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