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Abstract—The construction of the Hamiltonian matrix H is
an essential, yet computationally expensive step in ab-initio
device simulations based on density-functional theory (DFT). In
homogeneous structures, the fact that a unit cell repeats itself
along at least one direction can be leveraged to minimize the
number of atoms considered and the calculation time. However,
such an approach does not lend itself to amorphous or defective
materials for which no periodicity exists. In these cases, (much)
larger domains containing thousands of atoms might be needed
to accurately describe the physics at play, pushing DFT tools to
their limit. Here we address this issue by learning and directly
predicting the Hamiltonian matrix of large structures through
equivariant graph neural networks and so-called augmented par-
titioning training. We demonstrate the strength of our approach
by modeling valence change memory (VCM) cells, achieving a
Mean Absolute Error (MAE) of 3.39 to 3.58 meV, as compared
to DFT, when predicting the Hamiltonian matrix entries of
systems made of ~5,000 atoms. We then replace the DFT-
computed Hamiltonian of these VCMs with the predicted one
to compute their energy-resolved transmission function with a
quantum transport tool. A qualitatively good agreement between
both sets of curves is obtained. Our work provides a path forward
to overcome the memory and computational limits of DFT, thus
enabling the study of large-scale devices beyond current ab-initio
capabilities.

Index Terms—Machine Learning, Memory, Amorphous, DFT.

I. INTRODUCTION

As the dimensions of modern-day electronic devices keep
decreasing, ab-initio calculations are gaining momentum to
capture atomistic details and their influence on key perfor-
mance metrics. Density-functional theory (DFT) lends itself
optimally to this task. Besides the energy and wavefunction of
atomic systems, it can also return their Hamiltonian matrix H.
This quantity can then be passed to a quantum transport (QT)
solver to compute the “current vs. voltage” characteristics of
the targeted device. In structures with atomic disorder such as
the amorphous oxides used at the switching layer of resistive
random access memories (ReRAM), the construction of H can
be tedious. Large unit cells containing thousands of atoms are
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required to accurately represent ReRAM geometries. As DFT
scales with O(N3), N being the number of atoms, it becomes
prohibitively expensive at these scales, limiting the size of the
devices that can be investigated at the ab-initio level.

In this work, we present an approach that overcomes this
bottleneck by replacing DFT-computed Hamiltonians with
machine-learned (ML) ones. We demonstrate this approach by
simulating a valence change memory (VCM) cell, a ReRAM
type with applications in neuromorphic computing [1]. The
VCM of interest is made of a TiN- HfO5- Ti/TiN stack and
5,268 atoms. Its conductance can be modulated by applying an
external voltage, which leads to the generation/recombination
of oxygen vacancies at the Ti-HfO, interface and the for-
mation/dissolution of conductive filaments. From a model-
ing perspective, the underlying structural evolution can be
tracked with, for example, kinetic Monte Carlo (KMC) [2]
or molecular dynamics (MD) [3] simulations. To compute the
corresponding “I-V” characteristics, the Hamiltonian matrix of
samples extracted at regular time intervals should be produced
with DFT and passed as input to a QT solver. Bypassing the
DFT step with ML requires a model that can learn complex
features, e.g., non-regular lattices, the influence of oxygen va-
cancies, and the interaction between atoms of different types.
For that purpose, we adopt an equivariant graph neural network
(EGNN) [4] and show that, if it is trained on very few VCM
configurations, it can accurately predict the Hamiltonian of
large structures with unseen vacancy distributions and filament
morphologies. The electrical current calculated with the ML
Hamiltonian matrices are in good qualitative agreement with
DFT results.

II. METHOD
A. Network Architecture

One of the key challenges in machine learning electronic
structure predictions (MLESP) is the rotational covariance
of the Hamiltonian matrix involved. In a localized spherical
harmonic basis, a geometric rotation of the input geometry
leads to a change in the Hamiltonian matrix. Equivariant graph
neural networks have been proposed as a solution to drastically
reduce the data required to learn such transformation [4].
The organization of our EGNN is presented in Fig. 2. The
equivariant convolutions embed rotational covariance as a
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Fig. 1. Training (left) and testing (right) TiN- HfO2- Ti/TiN VCM structures
with the Hf and O atoms omitted for better visualization. A total of 20 slices
with 1 A thickness was extracted from the Random 1 and 2 devices with
arbitrary vacancy distributions to train the ML model. Another unseen 1-A
slice from Random 2 was used for validation. The trained model was then
tested on unseen samples with either two fully-formed (Filament 1 and 2) or
two broken (Broken 1 and 2) filament configurations.
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Fig. 2. Higher level overview of the equivariant graph neural network archi-
tecture used in this work. It is a strictly local network consisting of a single
message passing layer, with node (edge) embeddings n; (ej;) representing
atoms (interactions between atoms). The nodes aggregate messages from each
other, weighted by an attention layer, with the output embeddings being used
to update the edges. The updated embeddings n/, and e}i are then fed into
an output head to reconstruct the Hamiltonian sub-blocks.

physical constraint within the network [5]. The nodes (edges)
of our graph represent onsite (offsite) Hamiltonian blocks, and
the outputs of the nodes are used to update the edges. To
enable large-scale H predictions, strict locality is enforced
[6], while multi-headed attention is included [7] to better
distinguish between complex atomic environments. Finally,
the node and edge embeddings are fed into an output head
to reconstruct the Hamiltonian blocks [8].

B. Experiment Setup

Our task is to predict the Hamiltonian matrix of TiN- HfO,-
Ti/TiN valence change memory cells with different vacancy
configurations, as illustrated in Fig. 1. The displayed snapshots
were created through kinetic Monte Carlo simulations when
running a “current vs. voltage” sweep of the devices under
consideration [2]. They consist of two broken and two formed
filament configurations with a wide range of electrical con-
ductivity. This quantity is highly sensitive to the distribution
of oxygen vacancies within the central HfOy switching layer.

We first train a single model on the Hamiltonian matrix
of two device structures with uniformly distributed vacan-
cies. Both H were produced with the CP2K DFT package
[9], which relies on a localized basis set of Gaussian-type
orbitals. Note that the training examples were not generated
via KMC, but by randomly inserting oxygen vacancies into
device structures with a stoichiometric oxide layer. This makes
them significantly different from the clustered, physically
meaningful vacancy configurations that are part of the test set.
The large discrepancies between the training and test samples
is essential to rigorously assess the model’s ability to learn a
generalizable, useful function and apply it to unseen instances.

C. Simulation Workflow

Our workflow is illustrated in Fig. 3. During training,
augmented partitioning [10] is applied to allow for large
structures to be divided into multiple slices and fit into the
memory of a single GPU. Importantly, the atomic connectivity
to neighbor partitions is fully accounted for to maintain high
prediction accuracy. Also, partitioning occurs longitudinally,
in the z — y plane in Fig. 3, to capture the interface between
the different materials composing the VCM stack (TiN, Ti,
HfOy).

The trained EGNN is then tested on the full structure of
the selected device examples by constructing/predicting their
Hamiltonian matrix H. The latter are finally inserted into
our in-house quantum transport simulator [11] that returns
the corresponding energy-resolved transmission function T'(E)
and electrical current I; with the non-equilibrium Green’s
function (NEGF) formalism. In all cases, a voltage of 1 V
is applied between both TiN electrodes of the VCM cells.
The obtained results for the entries of H, T(E), and I, are
compared to reference DFT calculations.

III. RESULTS
A. Hamiltonian Prediction

The predicted node (¢,,) and edge (e, ) errors of the predicted
Hamiltonian matrices with respect to DFT are summarized in
Table I and their distributions are visualized in Fig. 4 in the
form of violin plots for the four TiN- HfO,- Ti/TiN VCM
configurations from Fig. 1. The model performs consistently
across different examples, with prediction errors per entry
lying within a small range (1.54 - 1.82 mEy for nodes and
~0.12 mE g for edges), with minimal outliers in all cases. The
total errors, averaged over all Hamiltonian entries, are between
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General overview of the workflow to train and test our machine learning model. The VCM cells considered (top left) consist of a HfO2 layer (blue:

Hf atoms; red: O atoms) with TiN and Ti/TiN electrodes (gray: Ti; dark blue: N). The device dimensions are set 93.4x26.2x26.3 A3 along the , y, and z
directions. Slices in the x-z plane (yellow) are used to train our EGNN (middle). A so-called augmented partitioning method (bottom left) [10] is leveraged to
ensure that the atomic connectivity is preserved at the slice boundaries. The trained model is then used to directly infer the Hamiltonian matrix H g of test
structures generated with KMC at different times of a full “I-V” sweep. Finally, H,..q serves as input to quantum transport calculations. The transmission

function T'(E) and electrical current [ are the final outcomes.

3.39 and 3.58 meV. As such, they are very close to the state-
of-the-art (2.2 meV) [12], but for much larger structures (5,268
vs. <150 atoms).

TABLE 1
SUMMARY OF NODE (€5,) AND EDGE (€¢) PREDICTION ERRORS FOR THE
DIFFERENT TEST STRUCTURES CONSIDERED IN THIS WORK. THE MEAN
ABSOLUTE ERROR (MAE) IS REPORTED IN ALL CASES. THE ELECTRICAL
CURRENT VALUES, AS COMPUTED WITH A DFT (/;.cf) AND
MACHINE-LEARNED (/}.¢q) HAMILTONIAN ARE LISTED AS WELL.

Device en[mEh] ee[mEh] ITef [AJ Ipred [AJ

Broken 1 1.82 0.12  338x10~1  435%x10710
Broken 1 1.65 0.12  8.00x10Y 4.66x1079
Filament 1 1.62 0.12  1.48x10° 1.28x10~2
Filament 2 1.54 0.12  6.99x10°6 4.59x106

B. Transmission and Current

The predicted energy-resolved transmission functions 7'(E)
are plotted in Fig. 4. Although the underlying Hamiltonian
entries do not differ by more than a few meV from their DFT
reference, the corresponding 7'(E) only qualitatively agree.
The trends are the same in both cases, the band edges of
the HfO switching layers are well reproduced, but several
features, especially transmission peaks, are not accurately
captured. On the other hand, the predicted electrical currents,

as computed from the transmission functions through the
Landauer-Biittiker formula [13], are close enough to their DFT
counterparts to assess the conductance state of the device
under test (see Table I). Generally, it can be observed that
our ML model is more accurate for configurations with fully
formed filaments than for samples with broken filaments where
the transmission is much smaller and therefore more sensitive
to errors in the predicted Hamiltonian matrices.

Since direct ML inferences are much faster than DFT (2
seconds for the forward pass vs. 3.94 node hours for DFT),
our results indicate that electronic structure predictions could
facilitate the investigation of devices with evolving morpholo-
gies. By replacing DFT with ML, we can rapidly construct
the Hamiltonian matrices of hundreds of intermediate samples
along the high-to-low resistance transition of VCM cells, thus
fully amortizing the training cost (<40 node hours). This will,
however, require further enhancement in the accuracy of the
ML models.

IV. CONCLUSION

We presented an ML-based approach that can be inte-
grated into a large-scale device simulation platform capable
of computing from first-principles the “I-V” characteristics
of atomic structures changing with time. Our model not
only bypasses computationally intensive DFT calculations, it
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Fig. 4. Prediction results for the four TiN- HfO2- Ti/TiN VCM test structures from Fig. 1. Each of them contains two sets of data. Left: Violin plot of the
error distribution for the predicted Hamiltonian matrix Hy,,..q. The 5th and 95th percentile values of €, (node error) and €. (edge error) are indicated using
red and green dashed lines, respectively. Note that for the "Broken 1” case, the 5th percentile lies outside of the plotted range. Right: Comparison between the
energy-resolved transmission function 7'(E) as obtained with a predicted Hamiltonian (H .4, solid red curves) with a reference DFT Hamiltonian (Hp rr,
dashed blue curves) for the Filament 1, Filament 2, Broken 1, and Broken 2 TiN- HfO2- Ti/TiN VCM configurations from Fig. 1. A bias of 1 V is applied
between both metallic electrodes of the devices. The corresponding Fermi window at room temperature is delimited by the black dashed lines. The apparent
HfO2 band gap is indicated by the double arrows.

can potentially also be used to construct the Hamiltonian
matrix of systems with sizes beyond current DFT capabilities.
Future work includes improving the prediction accuracy of our
framework by incorporating more training data and adopting
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re expressive network architectures. Other applications such

as phase-change memories can be envisioned. They undergo
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properties could be predicted with ML instead of being com-
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