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Abstract—The Non-equilibrium Green’s function (NEGF) for-
malism is a particularly powerful method to simulate the quan-
tum transport properties of nanoscale devices such as transistors,
photo-diodes, or memory cells, in the ballistic limit of transport
or in the presence of various scattering sources such as electron-
phonon, electron-photon, or even electron-electron interactions.
The inclusion of all these mechanisms has been first demonstrated
in small systems, composed of a few atoms, before being scaled
up to larger structures made of thousands of atoms. Also, the
accuracy of the models has kept improving, from empirical
to fully ab-initio ones, e.g., density functional theory (DFT).
This paper summarizes key (algorithmic) achievements that
have allowed us to bring DFT+NEGF simulations closer to the
dimensions and functionality of realistic systems. The possibility
of leveraging graph neural networks and machine learning to
speed up ab-initio device simulations is discussed as well.

Index Terms—Device simulation, non-equilibrium Green’s
functions, quantum transport, machine learning, GPUs

I. INTRODUCTION

The continuous shrinking of transistors’ dimensions is pos-
ing significant design and fabrication challenges to the semi-
conductor industry. At the same time, it is bringing the featured
sizes of nanoscale devices closer to what ab-initio quantum
transport (QT) simulators can handle within the framework
of the atomistic non-equilibrium Green’s function (NEGF)
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formalism, i.e., a few thousands [1]. To reach this number,
several progresses have been made since the pioneering works
of Taylor et al. [2] and Brandbyge et al., combining density-
functional theory (DFT) and NEGF at the beginning of the
2000s. Efficient numerical algorithms have been developed
[3], the parallelization of the workload has been widely popu-
larized [4], collaborations with high-performance computing
engineers have been established [5], while the emergence
of efficient hardware, in particular graphics processing units
(GPUs), has paved the way for computer-aided investigations
of complex phenomena in nano-transistors [6].

Despite impressive evolution, most ab-initio QT simulations
are still restricted to the ballistic limit of transport, while
electron-phonon or electron-electron interactions might play
a detrimental role in nanoscale devices and should therefore
be accounted for. Here, we give a brief overview of how the
current limitations of QT tools can be addressed, present our
implementation of the required models and algorithms into
a novel, open source package called QuaTrEx, and illustrate
it with one example, the simulation of a silicon nano-ribbon
in the presence of carrier-carrier scattering. We also suggest
how machine learning can be used to bypass the generation
of Hamiltonian matrices from first-principles.

II. AB-INITIO QUANTUM TRANSPORT

Our approach relies on the combination of DFT with NEGF
to shed light on the characteristics of nanostructures driven out
of equilibrium by an external perturbation (voltage, thermal
gradient, or optical signal). The first step consists of creating
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Fig. 1. Iterative scheme to compute the non-equilibrium Green’s functions

(NEGF) for electrons (retarded: G-*?) and lesser/greater: GS in the presence
of electron-phonon and/or electron-electron interactions. To determine the
corresponding scattering self-energies (ZRS), the phonon (DRS) and
screened Coulomb (WR’§) Green’s functions must be evaluated, which

requires the knowledge of the phonon self-energy (IT%'S) and/or of the
polarization function (PR:S). All these quantities are matrices IM that depend

on the energy (E) or frequency (w). Their entries (1) represent correlations
between two points located at R; and R;. The calculation of all these
matrices involves solving linear systems of equations and open boundary
conditions (LSE+OBC, red blocks) or performing energy convolutions through
fast Fourier transforms (FFT, blue blocks). In a parallel implementation, it
is convenient to store all M;; entries for one or a few E/w points when
dealing with LSE+OBC, while it is preferable to have access to a few M;;
for multiple E/w when computing the £&S, TIES, or PRS terms with
FFT. Data can be “transposed” with all-to-all communication operations from
one representation (E,w;i, j) to the other (7, j; E,w).

the Hamiltonian matrix of the system of interest with DFT.
Packages relying on a localized basis set, such as CP2K [7] or
transformations of plane-wave data into maximally localized
Wannier functions (MLWFs) [8], can be utilized for that
purpose. The dynamical, bare Coulomb, or electron-phonon
coupling matrices can be constructed similarly.

Regardless of the particles (electron, phonon, pho-
ton, screened Coulomb) and interactions (electron-phonon,
electron-photon, phonon-phonon, electron-electron) consid-
ered, the NEGF equations can be written in the following form

CH(€) = (A(€) - B(E)™, (D

—1

[cf@) - c2@) - [(cR©)"] =B, @

B(€) /dg' (My - C1(€ — &) M) ® Co(E),  (3)

where £ € {E,w} is the energy (F) or frequency (w) of
the Green’s function matrix C(£) and “self-energy” B, which
can be of retarded (R), lesser (<), or greater (>) type. Note
that the momentum dependence is omitted for simplicity. The
C, Cq, and C; matrices are either equal to G (electron),
D (phonon/photon), or W (screened Coulomb interaction),
while B refers to the interactions between different physical
systems and corresponds to either P (polarization), 3 (elec-
tron scattering self-energy), or II (phonon/photon scattering
self-energy). It also contains an open boundary condition
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Fig. 2. Simplified representation of the Serinv algorithm [9] for the parallel
calculation of the NEGF equations (retarded and lesser/greater). It relies on
the repeated application of Schur complements. Starting from a block tri-
diagonal input matrix, P partitions are created, each of them being attributed
to different computing units (CPUs or GPUs). After local processing, a
reduced system of equations arises, which must be solved sequentially before
reconstructing selected entries of the Green’s functions locally. Note the
mapping between the large and reduced systems (blocks with the same color).

term not shown here. The matrix A is made of the oper-
ator describing the system’s intrinsic properties, i.e., of the
Hamiltonian, dynamical, or bare Coulomb matrices. Finally,
the M; and M, matrices represent the coupling between
different populations (they are equal to the identity matrix in
some cases), whereas ® indicates an element-wise or standard
matrix-matrix multiplication.

Typically, a block tri-diagonal (BT) shape is imposed on
all A and B matrices by capping the maximum distance
over which two particles can interact. As a consequence, only
selected entries of C are needed, those corresponding to the
sparsity pattern of A and B [1]. From a numerical point
of view, Egs. (1) and (2) are linear systems of equations
(LSE) whose outputs are the desired entries of C. Each &
is independent of the other and can therefore be treated in
parallel. On the other hand, the solution of Eq. (3) involves
an energy convolution (EC) where a large number of energies
is needed for a few of the C matrix entries. We have set up a
parallel data transposition scheme to adapt the distribution of
the multi-dimensional B and C tensors in memory, depending
on the task at hand (LSE or EC). It is schematized in Fig. 1 in
the case of electron-electron and electron-phonon interactions.

Concretely, Eqs. (1) and (2) can be solved with the so-
called recursive Green’s function (RGF) algorithm, which is
sequential in essence [10]. To simulate larger device structures,
we have devised a parallel strategy and implemented it into
an open-source, GPU-based library, Serinv. It takes advantage
of the Schur complement of BT matrices [9] to divide all
input/output matrices into multiple partitions. Its principle is
summarized in Fig. 2. The energy convolution in Eq. (3) is
performed more efficiently in the time domain after a fast
Fourier transform (FFT) [11].

III. RESULTS

As an example, we consider a silicon nano-ribbon
with cross-section dimensions similar to experiments [12]
(Fig. 3(a)), including electron-electron interactions (self-
consistent GW approximation). Its length is first set to 52.1
nm for a total of N4=25,344 atoms, each of them expressed
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Fig. 3. (a) Schematic view of a Si nano-ribbon with a height of 1.5 nm, a
width of 5 nm, and a varying length L:o¢. The surface of the nano-ribbon
is passivated with hydrogen atoms. (b) Weak scaling results for the Si nano-
ribbon in (a) with L¢,:=52.1 nm and a total of N 4=25,344 atoms, in the
presence of electron-electron interactions within the GW approximation, on
the Frontier supercomputer. The experiment starts by measuring the execution
time on 1 node of the machine with Ng=2 energy points, each of them
being handled by 4 GPUs. Subsequently, N increases proportionally with
the number of nodes, reaching 18,800 on 9,400 nodes. The total time is
decomposed into its communication and computation components.

in a MLWEF basis. By leveraging the parallelization approach
of Fig. 1 and the distributed NEGF solver of Fig. 2, we could
simulate this device up to the full scale (9,400 nodes, 8 GPUs
each) of the Frontier supercomputer at Oak Ridge National
Laboratory, reaching a weak scaling parallel efficiency of 80%
when going from 1 to 9,400 nodes (Fig. 3(b)).

Due to the high computational burden of such calculations,
we could not execute a self-consistent Schrodinger-Poisson
simulation of a transistor with this nano-ribbon as channel
material. Instead, we had to reduce its length to 21.7 nm,
keeping the cross section the same, and imposed a 10 nm-
long linear potential drop with a 5 nm-long flat region on
each side of the structure. The potential difference was set
to 0.2 V. Selected results are presented in Fig. 4. From the
density-of-states plots in (a), it can be observed that turning
on electron-electron interactions (slightly) increases the nano-
ribbon band gap, as expected. This limited increase can be
explained by the fact that we employ a self-consistent GW
scheme, contrary to most DFT packages which implement the
GoWj method. Secondly, the electron concentration is high
enough (in the order of 1el6 cm™2) to reduce the impact of
carrier-carrier scattering on the band gap correction.

The influence of electron-electron interactions on the elec-
tronic current distribution is moderate, as can be seen in
Fig. 4(b). While the magnitude of the current’s peak and its
low-energy tail vary along the nano-ribbon transport direction
(x), they nevertheless remain very close to each other. Still, it
is worth noticing that in spite of these variations, the electronic
current remains perfectly conserved from one side of the
device to the other, validating the implementation of the model,
as also demonstrated in [1].

IV. OUTLOOK: MACHINE LEARNING

Through parallelization and dedicated algorithms, the so-
lution of the NEGF equations can be massively accelerated,
which enables the treatment of large atomic systems at un-
precedented levels of accuracy. However, the construction of
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Fig. 4. Simulation results for the Si nano-ribbon in Fig. 3(a) with L;o¢=21.7
nm. A linear potential drop is applied with a voltage difference of 0.2 V
between both ribbon extremities. (a) Local density-of-states extracted at =0
in the ballistic limit of transport (thin blue line) and in the presence of
electron-electron interactions within the GW approximation (thick red curve).
(b) Spectral current distribution extracted at x=2.2, 10.9, and 19.5 nm. The
inset shows the integral of this quantity (electrical current) as a function of
x, demonstrating current conservation.

the key ingredient for ab-initio QT simulations, the DFT
Hamiltonian matrix, remains a challenge, especially in struc-
tures made of thousands of atoms. Indeed, DFT scales with
O(N 3), N being the number of atoms. Recently, machine-
learning techniques based on equivariant graph neural net-
works (EGNNs) have been proposed to accurately predict
the entries of Hamiltonian matrices, after training with DFT
data [14]. Such approaches scale with O(N), significantly
outperforming DFT, but the training cost can be expensive,
and most implementations are limited to small domains (<150
atoms).

To be of practical relevance, machine-learned methods
should allow for the prediction of multiple Hamiltonian matri-
ces from a single training set. Devices with atomic geometries
evolving over time are ideal candidates for that. For example,
by applying a voltage to a valence change memory (VCM)
cell, oxygen vacancies start moving from one electrode to the
other, altering the resistance of this component in the process.
To simulate the “current vs. voltage” characteristics of VCMs,
their Hamiltonian matrix must therefore be recomputed at
each applied voltage. To speed up such calculations, we have
developed an EGNN capable of producing the Hamiltonian
matrix of devices containing thousands of atoms and have
shown that it can return the desired entries for different
oxygen vacancy distributions using one single configuration
as training [13]. Our methodology is displayed in Fig. 5,
whereas the energy resolved transmission function through a
VCM cell with a DFT and predicted Hamiltonian is reported
in Fig. 6. Although the average error in the machine-learned
Hamiltonian entries (~2 meV) is comparable to the state-of-
the-art for molecules, it is not yet accurate enough to fully
reproduce the behavior of the transmission function.

V. CONCLUSION

In this paper, we outlined a parallelization strategy and
numerical algorithm tailored to ab-initio quantum transport
simulations based on DFT and NEGF. Together, they unlock
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Fig. 5. Tllustration on how machine learning can be inserted to accelerate ab-initio quantum transport simulations by predicting the entries of Hamiltonian
matrices H based on training from DFT. A single device structure (left), here a valence change memory (VCM) cell, is divided into several partitions and fed
to an equivariant graph neural network (EGNN). Once trained with DFT data from the original VCM on multiple GPUs, this EGNN can accurately predict
the Hamiltonian matrix of different VCM configurations with various oxygen vacancy distributions. During prediction, the average error of the H entries does
not exceed ~2 meV with respect to DFT [13]. Note that EGNNs scale with O(N), where N is the number of atoms, and DFT with O(N?).
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Fig. 6. Transmission function through a TiN-HfO>-Ti/TiN valence change
memory cell as computed from ab-initio quantum transport with a DFT
Hamiltonian (solid blue curve) and with a Hamiltonian predicted from
machine learning after proper training (dashed red curve). The band gap of
the HfO2 insulator layer, Eq pf0,, is indicated with a double arrow.

the possibility to explore close-to-experiment device sizes, in-
cluding relevant physical effects, e.g., carrier-carrier scattering.
By further exploiting machine learning, novel opportunities
arise, such as the partial elimination of DFT calculations.
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