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Abstract—Theoretical efforts to study transport properties in
2D are either limited to a simplified analytical description with
limited applicability beyond the low-field regime or a numerically
intensive full-band approach that is prone to discretization
errors. In this paper, we describe a first-principles full-band
Monte-Carlo method that utilizes full scattering matrix-elements
while retaining the benefits of the analytical approach. We apply
this method to the study of field-dependent electron transport
in monolayer WS2. To show the limits of applicability, we
compare our approach to a simplified effective mass method.
For the effective mass method, we extract inter- and intra-valley
deformation potentials to match closely the scattering rates of
the full-band approach.

I. INTRODUCTION

Semiconducting transition metal dichalcogenides (TMDs),
such as MoS2, WS2, and WSe2, have gained significant
attention as potential channel materials for next-generation
field-effect transistors (FETs) (1, 2). This interest is largely
attributed to their ability to suppress short-channel effects at
the nanometer-scale (3, 4) and to the enhanced gate control
enabled by their intrinsic atomic thickness (5). Although recent
experimental results have demonstrated promising device
metrics, e.g., in a MoS2 nanosheet gate-all-around FET with
LSD = 40 nm, such as on/off current ratios exceeding 109,
drive currents up to 451 µA/µm, and subthreshold swings as
low as 65 mV/dec (6), theoretical modeling remains essential
to evaluate the fundamental performance limits and scalability
of these materials within advanced device architectures.
As these FETs are expected to operate with gate lengths
below 10 nm and drain-source biases approaching 1 V, electric
fields as large as 106 V/cm can arise along the transport
direction (7). Under such high-field conditions, models based
solely on the effective mass approximation become inadequate,
as carriers occupy higher-energy regions of the band structure
where this approximation is no longer valid (8–14). More
accurate transport models that incorporate full-band electronic
structures and complete scattering matrix elements typically
require dense sampling in the first Brillouin zone (FBZ),
resulting in impractical computational times and thus, limited
scalability (15, 16), or expansion on a suitable global basis set
in the Brillouin zone, such as Wannier functions (refs), which
require further discretization to access energy-dependent
properties such as the density of states (17–20).
In this work, we present a transport solver based on the
semiclassical ensemble Monte Carlo method that incorporates
a full-band representation, full scattering matrix elements,

Fig. 1. Top: The first band (n = 1) of monolayer WS2, the blue crosses give
the DFT output, the dashed lines show the EM approximation, and the black
line gives the interpolated energy. The second band (n = 2) can be obtained
by mapping k → −k. Bottom: Electron-phonon scatter rates as a function
of initial energy, the colors indicate the valley in which the scattering takes
place. Scatter rates are calculated using Eq. 7 and summed over all possible
transitions. The solid lines give the deformation potential approximation given
by Eq. 4 and 5.

and phonon dispersions, all evaluated on a coarse reciprocal
space mesh using a novel local and invertible interpolation
scheme. This methodology is applied to monolayer WS2, and
results are compared with those obtained using an effective
mass approximation. Section II provides an overview of the
computational approach, Section III presents the transport
simulation results, and Section IV concludes the work.

II. METHODS

A. Ab-initio material parameter extraction

Electronic band structures are obtained from density functional
theory (DFT), while phonon dispersions and the corresponding
scattering matrix elements are computed using density
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functional perturbation theory (DFPT), as implemented in
QUANTUM ESPRESSO and PERTURBO (21, 22). Since
WS2 is significantly affected by spin-orbit coupling (SOC),
it is included in the calculations. Breaking of time-reversal
symmetry due to spin-orbit interaction leads to a splitting of
the first conduction band into two. These bands (labeled n = 1
and n = 2) map into each other by a 60° rotation and each
exhibit a 120° degree rotation symmetry. This leads to the
emergence of distinct valleys at the K and K ′ points (see
Fig. 1).

B. The analytical ensemble Monte Carlo method

The ensemble Monte Carlo (MC) method is a semiclassical
approach used to obtain carrier transport characteristics
by statistically solving the Boltzmann transport equation
(BTE) (23). In this method, the trajectory of an ensemble of
carriers is simulated in real and reciprocal space by updating
its position r and wavevector k according to:

r(t+ δt) = r(t) + v(t)δt+
1

2
eEδt2 (1)

k(t+ δt) = k(t) + eEδt (2)

where δt is the time step, v is the group velocity of
the carrier, e is the carrier’s charge, and E is the applied
electric field, which is taken as homogeneous through space.
This approach yields carrier distributions in both real and
reciprocal space, properties of the ensembles, such as the
drift velocity and average energy, are calculated by taking
an average over time. In this work, we derive analytical
expressions for all relevant material properties, including
band energies, group velocities, and scattering rates. This
approach eliminates the need for a gridded representation,
thereby avoiding interpolation-related systematic errors and
substantially reducing computational cost. Section II-C
introduces the effective mass and deformation potential model
for scattering, while Section II-D details the aforementioned
interpolation scheme used to obtain full-band quantities.

C. Effective masses and Deformation potentials

An effective mass (EM) model considers a set of valleys, each
characterized by its effective mass m∗ and energy offset E0,
the dispersion of valley i is given by:

Ei(k) =
ℏ2

2m∗
i

(k − k0i)
2 + E0i, (3)

where k0i is the location of the valley in reciprocal
space. When including SOC in WS2 four distinct valleys
participate in transport: K, K ′, Q, and Q′ (see Fig. 1).
Scatter rates between these valleys are described as by
the deformation potential approximation (DPA). The elastic
intravalley scattering of the acoustic mode ν is given by

Siν =
2π

ℏ
D2
iν

Gu2ν
kbTρi, (4)

where G is the mass area density, uν sound velocity, Diν

the deformation potential related to the transition and ρi =

Fig. 2. Left: The irreducible wedge of the FBZ of monolayer WS2, points
of interest are labeled with gray dots. The triangular mesh used preform the
analytical interpolation is shown in black. The blue line represents an equal
energy contour of 420meV, revealing the four valleys also shown in Fig. 1.
Right: Closer look at one of the mesh elements, the six weights are given by
the black dots.

m∗
i /(2πℏ2), the density of states of valley i. For inelastic inter-

and intervalley transitions from valley i to valley j the strength
is given by:

Sifν (k) =
πD2

ifν

Gων
nopgfρfΘ(Ei(k)± ℏων +∆if ) (5)

where gf is the valley-degeneracy of the final valley, ℏων the
effective phonon energy (taken as constant for each mode),
nop = 1/(−1 + exp (ℏων/kbT )) the phonon occupancy
number and ∆ij = E0i − E0f , the difference in energy
offset (11). Figure 1 shows the bandstructure and scatter rates
calculated with EM and DPA. The potentials were taken so
that they closely match the full band scatter rates. Due to
the flat density of states arising from 2D EM dispersions,
scattering rates exhibit a step-like dependence on energy. The
EM and DPA model provides analytical expressions and is
straightforward to implement, enabling efficient calculations.
However, it does not account for energy regions where the
density of states is not flat or for any anisotropy in the
scattering rates.

D. Full bands

To accurately capture high-energy transport phenomena
relevant under high electric fields, it is essential to account for
the full electronic band structure. In this work, we consider
conduction bands up to 1 eV above the band edge. To enable
this with high efficiency, the band structure is represented
using a second-order interpolation scheme defined on a
triangular mesh covering the irreducible wedge of the FBZ.
Figure 2 illustrates this mesh applied to the first conduction
band of monolayer WS2. Within each triangular element t, the
energy dispersion is expressed as a regular two-dimensional
quadratic polynomial:

Et(k) =
∑

i+j≤2

ctijk
i
xk
j
y, (6)

where the coefficients ctij are based on DFT-calculated
band structure data. Due to the intrinsically quadratic
nature of the conduction bands, this interpolation achieves
high accuracy (root-mean-square error < 1 meV) with a
relatively modest dataset (276 points). Near the valley minima,
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this formulation naturally reduces to a parabolic, effective
mass-like description.
The local invertibility of the quadratic dispersion enables
analytical selection of k-points in the Monte Carlo algorithm,
as shown in Fig. 2 for the contour Et(kx, ky) = 420 meV.
This, together with the smooth nature of the bandstructure,
eliminates the need for a finely discretized k-space grid and
ensures exact energy conservation.
Turing to scattering, the transition rates between electronic
states |n,k⟩ → |m,k ± q⟩, where n and m represent band
indices and q is the phonon wavevector, are evaluated using
Fermi’s golden rule:

Wnm
ν (k, q) =

2π

ℏ
nop |Mnm

ν (k, q)|2 δρm(En(k)± ℏων(q)),
(7)

where Mnm
ν (k, q) denotes the electron-phonon matrix element

for phonon mode ν, and δρm(E) is the local density of states
at energy E in band m. The latter is computed analytically as
a line integral over the constant-energy contour CE :

δρm(E) =
1

(2π)2

∫

CE

dℓ

|∇kEm| . (8)

For the matrix elements, we use a linear interpolation approach
on the same mesh. Unlike the EM approach, which often
leads to step-like artifacts in scattering rates and relies on
isotropic approximations, the interpolation-based full-band
model supports smoothly varying and anisotropic scattering
rates.
To further accelerate the evaluation of the scattering step, we
pre-compute element-to-element scattering rates Wnmν

IF where
transitions from an initial element I in band n to a final
element F in band m via absorption or emission of a phonon
of mode ν are assigned fixed rates

Wnmν
IF = max

ki∈I

∫

kf∈F
Wnm
ν (ki,kf − ki) d2kf , (9)

with kf = ki ± q. the scatter rates shown in Fig. 1 are then
calculated by:

SnI =
∑

mν

∑

F

Wnmν
IF . (10)

Equation 9 over estimates the transition strength by taking
the maximum rate, an over-scattering check is implemented
in the MC algorithm that rejects a scatter event based on
the actual transition rate i.e., Eq. 7 evaluated with the initial
k-vector to k-vector that gives the maximal rate as is used
to construct Eq. 9. This element-wise formulation provides a
higher resolution representation of scattering processes than
the valley-to-valley description assumed in the DPA.

III. TRANSPORT RESULTS

The velocity field curves are extracted from MC simulations
for both EM and full-band implementations. Figure 3 shows
the drift velocity and average energy for a number of electric
fields. All results shown are obtained from ensemble MC
simulations with 500 particles, 10,000 time steps, and a time
step of δt = 5.22× 10−15 s. The first 2,000 data points were

Fig. 3. Top: Velocity field curve for intrinsic transport in monolayer WS2

obtained from ensemble MC simulations with 500 particles and 10,000 time
steps. Bottom: Average carrier energy during a MC simulation at different
external electric fields for both the EM and full band implementations.

Fig. 4. Top: Carrier energy distribution for the high field case (500 kV/cm),
EM results are shown in green, full bands in blue. Bottom: Reciprocal space
distribution on a logarithmic scale for low field (5 kV/cm, left) and high field
(500 kV/cm, right) conditions. Both taken from full bands MC simulations.

neglected to remove the transient response from the initial
conditions.
This method is computationally very efficient. The calculations
were performed on a single core (12th Gen Intel® CoreTM

i7-1265U CPU running at 1.80 GHz, on a laptop) and had an
average computation rate of 105 iterations per minute.

A. Model comparison

Figure 3 presents a comparison of the field-dependent
behavior of both models. In both cases, a linear response
is observed at low fields (E < 104 V/cm), with a mobility
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of 233 cm2/Vs. However, when fields on the order of
105 V/cm or higher are applied to the EM model, the
average carrier energy begins to deviate from the full-band
result. This divergence indicates the breakdown of the EM
approximation, as carriers begin to populate energy regions
where the underlying assumptions are no longer valid. This
effect is further illustrated in Fig. 4, which shows the carrier
distributions under high-field conditions. At these fields, the
applied electric field pushes carriers into energy ranges where
the EM and DPA approximations fail. In contrast, the full-band
implementation does not suffer from these limitations and
remains well-behaved even for fields exceeding 5×105 V/cm.

B. High field behavior

In the high-field regime (E ≈ 105 V/cm), a velocity saturation
is observed, as shown in Fig. 3, with a saturation velocity
of vsat = 3.8 × 106 cm/s. Beyond this field strength, the
system exhibits negative differential mobility (NDM), where
the drift velocity decreases with increasing electric field.
This phenomenon is similar to the Gunn effect (24) seen in
bulk semiconductors. NDM occurs when higher electric fields
reduce the average mean free path ⟨λ⟩ of the carrier ensemble.
The mean free path λ is defined as:

λn(k) =
|vn(k)|∑
mν S

nm
ν (k)

, (11)

where vn(k) = ℏ−1∇kEn(k) is the group velocity.
Figure 5 presents the calculated mean free path across the
entire FBZ for both conduction bands of monolayer WS2,
alongside a comparison between the EM-DPA and full-band
results. A comparison of carrier distributions in k-space from
Fig. 4, for electric fields in the linear and NDM regimes,
reveals significant differences in the regions of the FBZ
contributing to transport. At low fields, transport is dominated
by carriers in the K and K ′ valleys, both exhibiting an average
mean free path of approximately 10 nm. In contrast, under
high-field conditions, carriers are increasingly redistributed
into the Q valley. This valley exhibits a much shorter average
mean free path of around 3 nm, thereby reducing the net drift
velocity and leading to the onset of NDM.

IV. CONCLUSION

We developed an analytical full-band, full scattering matrix
element Monte Carlo transport solver and compared it to an
effective mass, deformation potential approach. Our full-band
method remains accurate in regimes where the effective mass
approximation breaks down while maintaining computational
efficiency. This makes it scalable to realistic device geometries.
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