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Abstract—As device dimensions approach the nanoscale, con-
tact resistance increasingly limits performance, particularly in
low-dimensional systems where quantum mechanical effects dom-
inate. In this work, we systematically investigate the quantum
limit (QL) of contact resistance in 1D, 2D, and 3D semi-
conductors. Using general analytical expressions derived from
ballistic transport theory and Fermi-Dirac statistics, we evaluate
the QL across both the non-degenerate (Maxwell-Boltzmann)
and degenerate (low-temperature) regimes. These expressions
are validated against numerical simulations that incorporate
electrostatic effects via the Poisson equation, allowing us to assess
both fundamental and practical limits of contact resistance. Qur
results show that in the non-degenerate limit, all dimensional-
ities exhibit similar behavior, whereas in the degenerate limit,
resistance increases exponentially as dimensionality decreases.
When realistic contact electrostatics are included, the intrinsically
weaker screening in lower-dimensional systems leads to more
extended depletion regions, which influence resistance scaling in
the non-degenerate regime. In contrast, in the degenerate limit,
contact resistance is primarily governed by the quantum limit.

Index Terms—Contact resistance, quantum limit, low-
dimensional materials

I. INTRODUCTION

Contact resistance is a major challenge in nanoscale devices,
especially as shrinking dimensions bring quantum effects to
the forefront. In low-dimensional systems, resistance is no
longer governed by classical models but instead approaches
a fundamental limit set by quantum transport principles [1],
[2].This quantum limit (QL) arises from the discrete nature of
conductance in confined systems and defines the lower bound
for resistance under ballistic conditions.

Recent studies have shown that contacts in two-dimensional
(2D) materials like MoSs can approach this limit. Through
careful contact engineering that mitigates Fermi-level pinning
and other detrimental mechanisms, contact resistances as low
as 42 Qum have been achieved [3]-[5]. However, inconsistent
definitions of the QL in the literature have created confusion
about what the correct mathematical formulation should be [6].
This highlights the need for a clear theoretical understanding
of the QL across dimensions.

In this work, we analyze the QL of contact resistance
in one-dimensional (1D), two-dimensional (2D), and three-
dimensional (3D) semiconductor systems and examine the
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constraints imposed by dimensionality as devices scale to
atomic thickness. We derive general analytical expressions for
the QL in s-dimensional systems under both non-degenerate
and degenerate carrier concentration limits, and validate them
against numerical calculations. The analytical expression are
then compared to numerical simulations of edge-contacted
devices incorporating electrostatics, enabling analysis of the
intrinsic QL in practical device configurations.

Figure 1 shows a schematic picture of the type of contacts
considered in this paper. In (a), we show a conventional contact
with a 3D semiconductor, where a bulk semiconductor is
contacted by a metal. In (b), we show the 2D contact where a
monolayer of a semiconductor makes a so-called edge-contact
with a metal, preserving the dimensionality of the contact.
Similarly, in (c) 1D semiconductor makes a contact with the
metal only at the endpoint of the nano wire.
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Fig. 1. Schematic illustration of the contact geometries considered in this
work: (a) bulk contact, (b) monolayer edge contact, and (c) nanowire edge
contact

II. DERIVATIONS & METHODS

We determine the QL of contact resistance in a contact to
an s-dimensional contact as
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where e is the elementary charge of the carriers, h is Planck’s
constant, g, is the valley degeneracy of the conduction band,




f(E) is the Fermi-Dirac distribution, and T'(k, E) is the trans-
mission of a particle at a certain wave vector k and total energy
E. The integral over k goes over all the transverse direction
perpendicular to the current direction. The transmission in a
perfect ballistic material is given as
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where © is a step function, E¢ is the conduction band energy
level, m* is the effective mass and the sum of the kinetic
energies of the transverse directions ¢ goes over all directions
but not the current direction.

A. Carrier densities in s-dimensional materials

The carrier density in an s-dimensional semiconductor with
a parabolic band is given by

29y

1
nap = / dk L@
(2m)s 1+ exp (E(:)TFEF)
B
where E(k) = };‘:F This can be rewritten as the known

Fermi-Dirac integral which in turn can be expressed using the
polylogarithm function:
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where Nc s = 2g, ( Sohe

For asymptotic cases of the polylogarithm:

e In the MB limit (Ec — Er > kgT):

Ec — Ep

kT '

o In the degenerate (low-1) limit (Ex > E¢):
o Nc,s _Ec—Ew /2
T T(s/2+1) ksT ’

B. Analytical Solutions for Contact Resistance
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We solve Eq. (1) analytically using approximations for the
derivative of the Fermi-Dirac distribution. In the MB limit,
where |df /dE| = Lme™(F=Fo)/FsT we find:
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where R l=20g, (kT .
Substituting Eq. (6) yields:
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In the low-T limit, where |df /dE| = §(E— Er), the contact
resistance becomes:
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Substituting the carrier density from Eq. (7), we obtain:
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Explicit solutions for the 1D, 2D, and 3D dimensionalities
in the low-T limit:
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C. Poisson Equation and Transport Modeling

To account for electrostatic effects in different dimen-
sional systems, we solve the Poisson equation numerically for
nanowire (3D), monolayer (2D), and bulk (1D) geometries.
The electrostatic potential energy U (z) is obtained by solving
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where ¢ is the dielectric constant, ¢ is the thickness of the

low-dimensional material, Np s is the doping concentration,

and N, is the effective density of states for an s-dimensional

material. The potential energy is obtained by self-consistently

solving for the carrier density given by the polylogarithmic
form of the Fermi—Dirac integral.

We discretize the Poisson equation using a finite-difference
scheme on a rectangular grid. The domain extends to y,.x =
300nm in the transport direction (with 0.5nm grid spacing)
and 50 nm in the transverse directions (with 0.2 nm spacing). A
uniform dielectric constant of € = 3.9 ¢y and an effective mass
m* = 0.5m, are assumed throughout. The semiconductor
thickness is set to ¢ ~ 1 nm, and carrier density is assumed to
vanish outside the semiconductor region.

Boundary conditions are chosen as follows: a Dirichlet con-
dition is applied at z = 0 nm, constituting the Schottky barrier
of 0.3eV; all other boundaries are treated using Neumann
conditions. The Fermi level is fixed at £ = OeV.

From the computed potential profiles, we extract the elec-
trostatic potential at the center of the semiconductor and use
Eq. (1) to calculate the contact resistance. The transmission
probability T'(k, E) is evaluated using the WKB approxima-

tion:
Fmax 2m* h2k|?
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(16)

This framework allows us to assess the role of electrostatics
in determining contact resistance and compare it directly with
the ideal quantum-limited values.

I



(a) 10° (b) (©
=@— MB limit —@— MB limit S 10 4 —@— MB limit
. ~@- Low T limit g 10° 4 =@ Low T limit = ~@— Low T limit
\G_/ 105 E —@— Numerical = . ~@— Numerical 5 10[) 1 h —@— Numerical
g S 102 ] .
g - 10 S 1
o 107" 4
Z 104 4 - g
Z — 5 10" 5 £ 1072 +
= g 2
10° a1 10° - é 103 4
T T T T T T T T T T T
10° 106 107 108 w102 10t 104 10' 108 1020 102
nip (cm™1) nap (cm™2) nsp (cm~?)
@ (6)10‘2 ®
—@— MB limit —0— dim = 1.00 90 nap =20 Nos
16 —~ ] ) —~ 2.0 1 o — e -
. 1016 Low T limit S 10t ] —0— dim = 2.00 & nip = é(‘ i (1)3 (‘,11172
a . E . . nop = 2e cm
‘E 104 4 —@— Numerical % E dim = 3.00 5:_? 15 n;ﬁ = 4e+19 cm~3
E = g ’
31004 :
§ 10" 4 3 £ o 7
e 7 ‘7 1.0 1 C
Q <
1010 - 107! S = \
' ! T e - T T T T 0.5 1 . I\i—l
-0.2 0.0 0.2 10-2 107! 10° 10! 102 1 2 3 4
Ep — E¢ (eV) nsp (Ne,s) Dimensions

Fig. 2. Quantum limit (QL) of contact resistance as a function of carrier density in different dimensional systems. (a—c) Numerically calculated QL (green)
compared with analytical approximations in the Maxwell-Boltzmann (MB) regime (blue) and the low-temperature (degenerate) regime (orange) for (a) 1D, (b)
2D, and (c) 3D semiconductors. (d) Carrier density in a 2D material as a function of conduction band minimum E¢, computed numerically and compared with
MB and low-T" approximations. (¢) Normalized contact resistance Rsp/Ro,s as a function of normalized carrier density nsp /N, for different dimensions.
(f) QL of contact resistance evaluated at ng;p = 2N, s as a function of continuous dimensionality.

IIT. RESULTS

Figures 2(a)—(c) present the QL of contact resistance for
1D, 2D, and 3D semiconductor systems. The results compare
the numerically obtained QL by evaluating Eq.(1) with ana-
Iytical expressions derived for the Maxwell-Boltzmann (MB)
regime (Eq.(9)) and the degenerate (low-temperature) regime
(Eq. (11)).

At low carrier densities, the MB approximation accurately
describes the QL across all dimensionalities. At higher densi-
ties, where carriers become degenerate, the low-1" expression
becomes valid. The maximum resistance between the low-T
and MB limits provides a good approximation for the true QL.

Figure 2(a) shows that in 1D systems, contact resistance
approaches a fixed lower bound, given by the quantum of
resistance R = h/(2e2g,), and cannot be reduced further
regardless of carrier concentration. In contrast, Figures 2(b)
and (c) demonstrate that 2D and 3D systems exhibit no such
hard floor. Their QLs continue to decrease with increasing
carrier density, consistent with Eqs. (13) and (14), although
practical doping limits constrain how far this reduction can
go.

Figure 2(d) compares the 2D carrier density as a function
of conduction band minimum F¢ using the numerically eval-
uated, full polylogarithmic expression (Eq.5) with the analytic
expressions in the MB (Eq.6) and low-1" limit (Eq. 7). The MB
and low-T" approximations agree with the numerical solution
in their respective limits, deviating only near the transition
region around Ec ~ Ep * 2kgT. Similar behavior is found

for 1D and 3D systems.

Figure 2(e) compares QL behavior across dimensionalities
by plotting normalized contact resistance (Rsp/Ro ) ver-
sus normalized carrier density (nsp/Nc,s). At low carrier
densities, all systems show a universal trend independent
of dimensionality. In the degenerate regime, dimensionality
becomes significant: 1D systems reach a hard lower limit, 2D
systems exhibit higher QL values than 3D, and 3D systems
achieve the lowest resistance for the same normalized carrier
concentration. Most transistor designs aim for degenerately
doped contacts, which leads to inherently higher QL in low-
dimensional materials compared to bulk semiconductors.

Figure 2(f) plots the QL at a fixed degenerate carrier density
(nsp = 2N¢,s) versus continuous dimensionality s from 0.5
to 4. The contact resistance increases rapidly as dimensionality
decreases, showing that miniaturization comes at the cost of
higher fundamental resistance.

Figures 3(a)-(c) show numerically computed electrostatic
potential energy profiles for 1D (bulk), 2D (monolayer), and
3D (nanowire) structures. All systems are simulated with
doping levels chosen to yield a conduction band energy of
0.8 eV. In (b) and (c), the semiconductor boundaries are
marked by red lines. Figure 3(d) shows potential profiles along
the center of each structure. The depletion width increases
with decreasing dimensionality due to reduced electrostatic
screening in lower-dimensional systems.

Figure 3(e) presents the contact resistance as a function
of doping concentration. At low doping, resistance values
are comparable across dimensions, despite drastically different
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Fig. 3. Electrostatic potential energy profiles and corresponding contact resistance in 1D, 2D, and 3D semiconductor contacts. (a—c) Simulated electrostatic
potential energy in bulk (1D), monolayer (2D), and nanowire (3D) geometries, respectively. In (b) and (c), red lines denote the spatial boundaries of the
semiconductor. (d) Cross-sectional potential profiles extracted from the center of each structure. (e) Contact resistance as a function of doping concentration

for each dimensionality.

depletion widths. As doping increases, resistance drops more
steeply in 1D and 2D systems, reaching their respective QLs
more quickly than in 3D, due to both their larger electrostatic
sensitivity and inherently higher Ry ;. Although 3D systems
eventually achieve lower absolute resistance, they require
much higher carrier concentrations to do so.

IV. CONCLUSION

We derived analytical approximations based on the Fermi-
Dirac distribution which effectively capture the QL across
carrier densities, closely matching numerical results when
considering MB approximation at low carrier densities and
the low-T" approximation at high carrier densities.

At non-degenerate carrier densities, the QL is dimension-
independent, while at degenerate densities, the QL increases
exponentially as dimensionality decreases. In 1D systems, re-
sistance is fundamentally limited by the quantum of resistance
and remains largely unaffected by carrier concentration, unlike
in 2D and 3D systems.

Additionally, we examined transport in simple edge-contact
geometries to assess the influence of electrostatics on the
actual contact resistance. The depletion width at the contact
interface varies with dimensionality due to differences in
screening, which in turn affects the sensitivity of the con-
tact resistance to the doping concentration. Low-dimensional
materials exhibit the strongest reduction in contact resistance
at moderate doping levels, as their electrostatics are more

sensitive to doping changes. In contrast, bulk materials show
the most effective scaling at high doping levels, where contact
resistance is ultimately limited by the QL.
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