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Abstract—The study of quantum transport in open devices
based on density matrix methods such as the Wigner transport
equation provides many benefits, most importantly the ability
to model time-resolved phenomena such as intrinsic oscillations
in resonant tunneling diodes or amplifier behavior of gate-all-
around FETs. Considering that the transport equations can
be solved using different basis sets, discretization schemes and
boundary conditions, a variety of different approaches emerges.
Meanwhile, the optimal method may change based on the
simulation requirements. Therefore, an overview of the different
techniques when applied to open devices in engineering applica-
tions is given here with a focus laid on the comparison of the
phase space methods to those solved in real space.

Index Terms—transient, quantum transport, density matrix,
wigner, von-neumann, tight-binding, quantum-liouville, discon-
tinuous galerkin.

I. INTRODUCTION

As semiconductor devices continue to scale, the growing
complexity of atomistic effects also leads to increasingly
demanding requirements for the simulation models. These
requirements include but are not limited to the appropriate
treatment of open contacts and allowing for the inclusion of
multiband models, in addition to taking into account scattering
effects, all while maintaining computational efficiency. The
latter point is important in particular for the time-resolved
case, where non-equilibrium Greens function (NEGF) methods
are still plagued with an extreme computational burden as of
now [1]. The application of density matrix based methods,
however, is especially well-suited for this case, with several
different approaches to chose from. These can mainly be
divided into phase space methods such as the Wigner Transport
Equation (WTE) [2] and quantum-Liouville-type equation
(QLTE) (Fig. 1a) [3], and real space methods which solve
either a Heisenberg equation or the von-Neumann equation
(VNE) for the density matrix in real space (Fig. 1b) [4]. While
the WTE is arguably the most well known and historically
most used of the methods due to its similarity to the Boltzmann
equation and ease of including inflow boundary conditions,
the real space methods, especially in conjunction with a
tight-binding description can offer several advantages. Inflow
boundary conditions can still be included in this case with the
introduction of a local Fourier transform at the contacts [5]
(see Fig. 2).
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Fig. 1. The real parts of the Wigner function (a) and density matrix (b)
are shown for the same bias voltage applied to an exemplary RTD. The two
functions are analytically linked by a Fourier transform along the ξ-coordinate
if the same Hamiltonian is used.

Therefore, the benefits and drawbacks of each method,
along with the appropriate discretization methods are pre-
sented in the following sections, accompanied by results when
applied to the exemplary devices of the resonant tunneling
diode (RTD) (Fig. 3 and Fig. 4), the gate-all-around FET
(GAAFET) shown in Fig. 5, and a squeezed channel GAAFET
(Fig. 6 and Fig. 7). Even though scattering is neglected here,
relaxation time approaches can easily be included [3] with all
approaches.
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Fig. 2. The derivation of the Wigner function is schematically shown on the
left hand side, where usually a uniform grid in real space is assumed, before
applying the Fourier transform along the ξ-direction. The tight-binding real
space formulation is schematically shown on the right side with the density
matrix elements defined on the same lattice sites as the Hamiltonian with the
curved lines representing coupling terms between density matrix elements.
The Fourier transform is only needed at the contacts as is indicated by the
dashed red rectangle.

II. PHASE SPACE BASED METHODS

The use of phase space methods naturally follows from
the need to distinguish between in- and outgoing waves
when setting up the inflow boundary conditions accounting
for the nature of open devices [6]. The WTE governing the
temporal evolution of the Wigner function is arguably the most
widely used of the phase space methods, with a wealth of
research conducted [2] and applications in both electron and
phonon transport modeling [7], as well as electron-phonon
scattering [8]. Results obtained by the WTE agree well with
those obtained through reference results, in particular if a
complex absorbing potential (CAP) is added [9] to minimize
reflections at the edges of the finite computational domain
in k-direction. The same applies to the closely related QLTE
which is obtained by replacing the analytical Fourier transform
when deriving the Wigner function with a basis expansion onto
e.g. plane waves or eigenfunctions of the diffusion operator,
thereby further improving the computational efficiency when
reducing the number of basis vectors [3]. However, as is
demonstrated in Fig. 2, the necessity of the phase space
transform along the ξ axis by either a Fourier transform or
the basis expansion also limits the possibilities of including
non-uniform grid and thus, inclusion of heterostructures with
varying lattice distances.

With relatively few exceptions, e.g. [10], most work on
density matrix electron transport is based a continuum Hamil-
tonian in the effective mass approximation Ĥ = − ∇2

2m∗ +V (r),
e.g. [3], [5], [6]. This can pose several disadvantages, for ex-
ample when applying the coupled mode space approximation
[11], [12] to the squeezed channel GAAFET shown in Fig. 6.
As the coupling terms depend on the explicit derivative of the
modal wave functions, they can be ill-defined at the interface
and difficult to capture from a numerical standpoint [12].
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Fig. 3. Reference current densities from the NEGF method are compared to
results obtained by a tight-binding (central difference) von-Neumann equation
(TB-VNE), finite volume WTE (FV-WTE) and discontinuous Galerkin method
QLTE (DG-QLTE). All agree well with each other for the flatband simulation
of a GaAs/AlGaAs RTD with an assumed constant effective mass.
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Fig. 4. The time-resolved current densities obtained by the TB-VNE and
FV-QLTE are shown for a change in applied drain-source voltage from 0.15
V to 0.25 V at t = 0 fs for the same RTD as shown in Fig. 3, albeit with
the inclusion of a spatially varying effective mass in the barrier regions.

A. Discretization methods

Common discretization methods of the WTE and QLTE
consist of finite difference upwind schemes (UDS), Monte
Carlo sampling (MC) and finite volume methods (FV). Ad-
ditionally, efficient finite element methods like the discontin-
uous Galerkin method (DG) have also been investigated [13].
Further analyzing the deterministic methods and excluding
upwind schemes due to inherent numerical difficulties [14], the
strengths of the FV method lie in both the wealth of research
conducted and numerical robustness [3], [14]. By deriving the
discretization pattern from a phase-space exponential operator,
a norm-conserving formulation is achieved that can easily
be adapted to include higher order derivatives or a position-
dependent effective mass [14]. In comparison, the DG method
can offer significant reductions in computation time for the
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Fig. 5. For multigate devices such as GAAFETs the previously mentioned
approaches can be combined with the mode-space approximation [11]. The
self-consistent results of all methods agree well with each other and reference
results obtained by a coupled mode space NEGF method.

transient case due to its explicit nature and high parallelization
by utilizing the globally block-diagonal system matrix [13].
Still, the numerical flux requiring the use of limiters to obtain
stability proves to be challenging.

However, all of the above discretization methods approach
their limits when applying such continuum models onto de-
vices just few atoms in dimension where a more atomistic
description may be helpful [12]. Again, for the case of the
squeezed channel GAAFET the coupling terms are sharply
varying at the interface, which can be hard to capture numeri-
cally both in the Fourier transform and when integrating over
the numerical cell (indicated by the blue shaded areas in Fig.
2) in the finite volume scheme.

III. REAL SPACE BASED METHODS

Even though the already mentioned discretization methods
can also be applied to solving the VNE (e.g. finite difference
scheme used in [5]), the real space formulation naturally
lends itself to the use of atomistic models like tight-binding
Hamiltonians [4]. When inserted into a Heisenberg equation of
motion along with the density operator defined in terms of field
operators, a density matrix formalism in second quantization
is obtained:

−ıℏ d
dt
ρls =

∑

u

γulρus −
∑

m

γmsρlm + (ϵl − ϵs)ρls, (1)

with the density matrix elements defined as the expectation
values of pair operators ρls = ⟨ĉ†l ĉs⟩ and hopping and onsite
terms γ and ϵ, respectively. Instead of a somewhat arbitrarily
chosen computational grid as is used with the WTE, the
density matrix elements are defined on the same lattice points
as those of the tight-binding Hamiltonian, with a resulting
discrete equation of motion similar to when a finite difference
scheme is used. One of the main benefits is that problems
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Fig. 6. If the channel dimensions of the GAAFET are modulated, coupling
between the modes is induced and the rapidly changing coupling terms are
difficult to capture with continuum models [12]. The real space method based
on the tight-binding VNE is better suited for these kinds of devices and the
self-consistent drain-end current agrees well with reference results from the
NEGF method. No solution using the WTE or QLTE based on a continuum
Hamiltonian could be obtained.

regarding the non-unitary transforms in the conventional phase
space approach are circumvented [6] and an atomistic de-
scription appropriate for nanoscale devices is retained, so that
changes in device geometry (Fig. 6) and heterostructures with
varying interatomic distances pose no problem [4]. The inflow
boundary conditions can be included by using a local Fourier
transform at the contacts [5] which is readily incorporated into
the system matrix. Similar to the DG formulation mentioned
earlier, explicit methods in the time domain can be used,
where the high sparsity of the system matrix is an additional
computational benefit. For the RTD shown in Fig. 3 the results
agree well with those obtained by the phase space and NEGF
methods, both for the case of a constant effective mass and
if the spatial variation of the effective mass in the barriers is
taken into account [4]. For the transient case depicted in Fig.
4 the current density obtained from the real space method
shows some minor oscillations between 200 and 600 fs that
are not seen with the FV WTE method, likely stemming either
from the difference in inclusion of boundary conditions or
from effects captured in the tight-binding Hamiltonian not
present with the use of a continuum effective mass Hamil-
tonian. When applied to the squeezed channel GAAFET, the
previously mentioned difficulties pertaining to the continuum
Hamiltonian and discretization schemes are circumvented and
discontinuities can easily be taken into account with resulting
drain-end currents less than half of those from the non-
squeezed GAAFET at the same gate voltages (Fig. 6). The
results obtained by this method also agree with those obtained
through a coupled mode-space NEGF method [12], however
the density matrix formalism allows for further analysis of the
time-resolved carrier transport as is demonstrated in Fig. 7 for
the case of amplifier operation.
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Fig. 7. The time-resolved drain-end current obtained from the TB-VNE is
shown for the GAAFET from Fig. 6. The transistor is in AB operation with
its operating point Vop = 1.387 V chosen by Vop = Vthreshold + 0.25 V. A
sinusoidal signal at f = 300 GHz is applied to the gate with three different
amplitudes Va. The resulting current can be further analyzed, e.g. regarding
amplifier and mixing behavior.

IV. CONCLUSION

The WTE and QLTE provide an easy to implement and
efficient model that is applicable to numerous devices and
transport problems, and can be paired with both conventional
(e.g. finite volume) and novel discretization methods. The
QLTE formalism in particular is well suited for the combina-
tion with the FV and DG discretization schemes for numerous
single- and multiband applications where the use of a con-
tinuum effective mass Hamiltonian is appropriate. However,
if a more atomistic description is needed, the inclusion of a
tight-binding Hamiltonian may be more suitable and the real-
space method is the better option. With the inclusion of a local
Fourier transform at the contacts, inflow boundary conditions
can still be included in this case and results agree well with
stationary and transient values from the phase space methods
and stationary results from the NEGF method.
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