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Abstract— We propose an enhanced Cellular Monte-Carlo 

(CMC) algorithm that merges the computational efficiency of 

traditional CMC with the high accuracy of conventional full-

band Semi-Classical Monte-Carlo simulations. The algorithm 

incorporates the smearing method and Marching Tetrahedra 

algorithm to significantly reduce discretization errors in 

transition rates and ensure rigorous energy and momentum 

conservation. Electron drift velocity simulations in silicon 

demonstrate that our method closely aligns with both 

conventional Monte-Carlo results and experimental data, 

highlighting its suitability for efficient large-scale 

semiconductor transport simulations. 
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I. INTRODUCTION 

The Semi-Classical Monte-Carlo (SCMC) method 
remains a powerful computational approach for simulating 
carrier transport in semiconductors, particularly under non-
equilibrium and high-field conditions where traditional drift-
diffusion models are inadequate [1, 2]. The conventional 
SCMC (conventional MC) explicitly calculates scattering 
events dynamically, offering high physical accuracy but 
requiring substantial computational resources, thus limiting 
the practical applicability. The Cellular MC (CMC) method [3] 
improves computational efficiency by precomputing 
transition rates between discretized cells in the Brillouin zone 
but compromises accuracy due to discretization-induced 
errors in energy and momentum conservation. To address this 
issue, we present an enhanced CMC algorithm incorporating 
Marching Tetrahedra (MT) algorithm [4] and the smearing 
method [5], maintaining computational efficiency while 
significantly improving accuracy. 

II. PROPOSED ALGORITHM 

In the SCMC framework, carrier transport is simulated by 
following the motion of individual particles under external 
and internal forces. The particles drift under the influence of 
the fields, and upon a scattering event, their states are updated 

according to the transition rates. The transition rate Γ���� ��, ��	 is calculated via Fermi’s golden rule as follows: 

 Γ���� ��, ��	 = ��
ℏ ������ ��, ��	�� ��� + �

�∓ �
�� 

 × ������	 ± ℏ��� − ������	� (1) 

where ����� ��, ��	 denotes the matrix elements, �/�� and �/��  
represent the band index and wavevector of the initial/final 
state,  respectively, η is the phonon mode index, ��  is the 

phonon occupation number, and �  and �  correspond to 
electron and phonon energies, respectively. The upper and 
lower signs indicate phonon absorption and emission, 
respectively. 

 

Fig. 1. Illustration of final-state selection in conventional MC. Transition 
rates are cumulatively summed over cells that satisfy energy and momentum 
conservation. The final cell is where the cumulative rate first exceeds the 
random number, and the final state is selected from the iso-energy surface 
within that cell. 

In the conventional MC approach, the delta function in 
Fermi’s golden rule is evaluated using the Gilat–
Raubenheimer (GR) method [6]: 

 ������	 ± ℏ��� − ������	� = �
|∇#�| $%&#�'()��	±ℏ*�+

 (2) 

where $% represents the iso-energy surface at the final state 
energy. As illustrated in Fig. 1, conventional MC computes 
transition rates one by one for all final cells that satisfy energy 
and momentum conservation, until the cumulative rate 
exceeds a random number drawn between 0 and Γ,-.. Once 
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the final cell is selected, the final state is randomly chosen 
from the iso-energy surface $%  within that cell. Since the 
initial state of the particle changes after each scattering event, 
the transition rates must be recalculated every time. 
Performing this procedure for every scattering event of every 
particle results in significant computational cost, which 
constitutes a major source of overhead in conventional MC 
simulations. 

CMC achieves substantial speedup over conventional MC 
by precomputing transition rates on a fixed grid and 
organizing them into a hierarchical lookup table. This 
structure enables fast sampling: as illustrated in Fig. 2, once 
the initial cell is known, the algorithm selects final states by 
traversing the hierarchy based on transition rate weight. 
However, this efficiency comes at the cost of accuracy. 
Discretizing both the initial and final states introduces errors 
in energy and momentum conservation, and assigning the 
final state to the center of the selected cell exacerbates this 
issue. 

 

Fig. 2. Illustration of final-state selection in CMC. Random selection is 
performed through a hierarchical lookup table based on transition rate 
weights. 

To correct the inaccuracies arising from the discretization 
of states, our enhanced CMC algorithm introduces two 
additional processes after selecting the final cell through the 
standard CMC procedure: a filtering step to enforce strict 
energy and momentum conservation, and the application of 
the Marching Tetrahedra (MT) algorithm to accurately 
determine the final state. As the first step, once the final cell 
is selected through the basic CMC procedure, we examine 
whether the chosen final cell contains the energy ����	 ±ℏ���. If this condition is not satisfied, the scattering event is 

treated as self-scattering. This approach effectively yields the 
same result as using a pre-filtered transition rate table that 
includes only energy- and momentum-conserving transitions. 
If a final cell satisfying energy and momentum conservation 
is selected, the MT algorithm is applied to that cell. Fig. 3 
illustrates the MT algorithm used to determine the final state. 
The final cell is divided into six tetrahedra, and each 
tetrahedron is examined to determine which case it 
corresponds to, as shown in Fig. 3(a). Although the MT 
algorithm defines 15 possible cases, symmetry reduces these 
to 8 unique configurations. Iso-surfaces are then identified 
within each tetrahedron. Fig. 3(b) illustrates the method for 
randomly selecting an iso-surface based on the area-weighted 
probabilities calculated from the iso-surface areas within each 
tetrahedron. Each of the six tetrahedra may contain an iso-
surface, and after calculating the respective areas, an iso-
surface is randomly chosen with a probability proportional to 

the area. Finally, Fig. 3(c) shows how the final state within the 
selected triangular surface is determined using random 
numbers R and S, which are multiplied by vectors w and v, 
respectively, to specify the position within the triangle. If R + 
S > 1, the resulting state falls outside the triangle, so the values 
are adjusted to 1−R and  1−S, respectively, ensuring that the 
final k-point remains within the triangle. Furthermore, to 
enhance energy conservation and improve the accuracy of 
final-state momentum and energy calculations, each cell in the 
original 30×30×30 mesh was further subdivided into 3×3×3 
sub-cells, resulting in an effective resolution of 90×90×90 
sub-cells. The procedure described in Fig. 3 is then performed 
individually within each sub-cell, thus significantly increasing 
simulation precision. 

 

Fig. 3. Illustration of the MT method used to determine the final state. (a) 
Representative configurations of the MT cases used to identify iso-surfaces 
within each of the six tetrahedra in a final cell. (b) Area-weighted random 
selection of an iso-surface among candidate tetrahedra. (c) Selection of the 
final particle position within the selected triangle. 

While the MT approach significantly improves the 
accuracy of energy and momentum conservation in the final 
state, it does not correct the erroneous transition rates caused 
by the discretized transition rate table. Fig. 4 shows the 
electron distributions in silicon under an electric field of 0.1 
kV/cm along [100] directions. Fig. 4(a) is the electron 
distribution obtained from a conventional MC simulation 
performed on a 30×30×30 mesh in the Brillouin zone of 
silicon. Since conventional MC calculates transition rates 
explicitly based on the energy and momentum of each particle, 
the resulting electron distribution is naturally smooth and 
physically accurate. In contrast, Fig. 4(b) exhibits a markedly 
different behavior. It shows the electron distribution obtained 
by applying the MT method after the CMC procedure, using 
transition rates precomputed on a 30×30×30 mesh via the GR 



method. As seen in the Fig. 4(b), the distribution is artificially 
sharp. This is because the transition rates calculated strictly at 
the cell center by the GR method can deviate significantly 
from the true transition rates corresponding to the actual 
particle states. 

To mitigate these distribution errors, we applied the 
smearing method, which approximates the delta function in 
Fermi’s golden rule with a normalized Gaussian: 

������	 ± ℏ��� − ������	� 

 = �
/√� exp 4− 5()��	±ℏ*�+6()�7��8

/ 9�: (2) 

where ;  is the smearing width. This approach smooths the 
final-state distribution and reduces errors caused by the 
discretized transition rates. Fig. 4(c), which uses smearing-
based transition rates, shows a distribution that closely 
matches the result from conventional MC. This similarity 
arises because the smearing method produces smoothly 
varying transition rates, ensuring that the rate evaluated at the 
cell center better approximates the rate at arbitrary points 
within the cell. 

 

Fig. 4. Comparison of three-dimensional electron distributions in the 
Brillouin zone of silicon under a 0.1 kV/cm electric field along the [100] 
direction: (a) conventional MC, (b) CMC with MT using GR-based transition 
rate table, and (c) CMC with MT using smearing-based transition rate table. 

III. SIMULATION AND RESULTS 

A. First-principles Based Preprocessing 

The parameters required to calculate the scattering rates—
matrix elements g, phonon energy ω� , and electron energy 

E—were obtained using Quantum ESPRESSO [7, 8] and the 
EPW package [9, 10]. Density Functional Theory (DFT) 
calculations using Quantum ESPRESSO were performed with 
the pseudopotentials from the “SSSP PBE Precision v1.3.0” 
library [11] and the input parameters summarized in Table 1. 
Subsequently, matrix elements were interpolated from coarse 
k- and q-point grids (16×16×16 and 8×8×8, respectively) to 
finer 30×30×30 mesh using Wannier interpolation in EPW. 

Both the electronic band structure and phonon dispersion were 
similarly interpolated using EPW. These quantities were 
further   interpolated on even finer grid, such as 90×90×90 k-
point mesh. All tables were generated on a Γ-centered grid in 
the crystal coordinate system defined by reciprocal lattice 
vectors. To accelerate the calculation of group velocity, we 
also generated an additional band structure table on a 
100×100×100 k-point grid in Cartesian coordinates 7=. , => , =?8. 

TABLE I.  INPUT PARAMETERS USED IN QUANTUM ESPRESSO 

Input parameter Value 

Wave function cutoff 30 Ry 

Charge density cutoff 240 Ry 

Smearing method Marzari-Vanderbilt 

Gaussian spreading 0.05 Ry 

�-point grid 12×12×12 

�-point grid 6×6×6 

 

Due to the large size of the matrix element data, it is 
essential to remove unused entries during the table generation 
stage. We prefiltered matrix elements that do not conserve 
energy to reduce the memory footprint of the simulation [12]. 
Additionally, the tables were stored in HDF5 format [13], 
which improves loading speed and reduces storage 
requirements. 

B. Simulation Setup 

We assessed the accuracy and computational efficiency of 
our method by calculating the electron drift velocity in silicon 
under electric fields applied along the [100] direction, using 
conventional full-band SCMC and CMC simulations with 
either the GR or smearing method. Each simulation employed 
100,000 particles with a time step of 10 femtoseconds, and 
unless otherwise specified, a 30×30×30 k-point mesh is used. 
The drift velocity at each electric field was obtained as the 
250-step moving average, once the relative error between the 
500-step and 250-step averages fell below 0.001. 

C. Results 

Fig. 5 presents the simulated electron drift velocities in 
silicon under electric fields ranging from 0.1 kV/cm to 100 
kV/cm along the [100] crystallographic direction, compared 
with experimental data [14]. Fig. 5(a) shows results from 
simulations performed on a 30×30×30 k-point mesh using 
conventional MC, GR-based CMC, and smearing-based CMC. 
Significant differences between conventional MC and both 
CMC methods are observed. Compared to experimental data, 
conventional MC also exhibits deviations. To improve the 
accuracy in conventional MC, simulations were performed 
again with a denser 90×90×90 k-point mesh, resulting in much 
closer agreement with the experimental data, as shown in Fig. 
5(b). As discussed previously, in the case of CMC+MT 
simulations, the final cell was first determined using the 
transition rate tables on 30×30×30 k-point mesh. Each final 
cell was then subdivided into 3×3×3 sub-cells, resulting in an 
effective resolution equivalent to a 90×90×90 k-point mesh. 
The smearing-based CMC+MT approach demonstrates close 
agreement with the conventional MC results. In contrast, the 
GR-based CMC+MT still shows noticeable error, primarily 
due to the transition rates strictly calculated at the cell centers. 
The smearing method, by generating smoothly varying 



transition rates across cells, allows the resulting drift velocities 
to better match those of conventional MC. 

 

Fig. 5. Comparison of simulated electron drift velocities in silicon under 
electric fields along the [100] crystallographic direction. (a) Results from 
simulations on a 30×30×30 mesh using conventional MC, GR-based CMC, 
and smearing-based CMC, shown with experimental data [14]. (b) Results 
from simulations on a 90×90×90 mesh using conventional MC, and CMC 
combined with the MT method, also shown with experimental data [14]. 

Table 2 summarizes the average computational time per 
step for each simulation method. For conventional MC, 
increasing the mesh density from 30×30×30 to 90×90×90 
dramatically increases computational time whereas applying 
MT to the CMC method introduces negligible additional 
computational cost. Notably, under low electric field 
conditions, the computational time for conventional MC 
increases by more than an order of magnitude. This efficiency 
arises from the straightforward algorithmic structure of the 
MT method. The difference in computation time between the 
GR and smearing methods primarily arises from the time 
required to access the scattering table. In the smearing method, 
transition rates are computed for all possible final cells, even 
if the values are negligible or close to zero. The size of the 
scattering table depends on how aggressively such 
insignificant transition rates are pruned. In our 
implementation, transition rates smaller than 1/100 of the 
maximum rate in each initial cell were excluded when 
generating the scattering table. As a result, the scattering table 
for the smearing method was smaller than that of the GR 
method, leading to shorter lookup times. 

IV. CONCLUSION 

We developed an enhanced CMC algorithm employing 
smearing and MT methods, effectively addressing CMC 
limitations in accuracy and energy-momentum conservation. 
Simulation results confirm that our method closely matches 

conventional full-band MC simulations and experimental 
data, while providing significant computational advantages. 
This enhanced CMC approach offers a promising 
computational framework for efficient and accurate large-
scale semiconductor transport simulations. 

TABLE II.  AVERAGE ELAPSED TIME (MS) PER STEP (10 FS) 

δ-Function 

Integration 
MC Method 

k-Point 

Mesh 

Density 

Electric field (kV/cm) 

1 10 100 

GR 

Conventional 
303 1192.4 1466.2 10281.7 

903 15787.1 16704.6 20278.0 

CMC 303 263.0 261.0 254.0 

CMC+MT 903 259.3 258.0 264.0 

Smearing 
CMC 303 19.5 19.4 25.8 

CMC+MT 903 20.0 20.0 33.0 
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