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Abstract—The heat generation rate is commonly calculated
via phonon energy transfer rate. To ensure consistency with the
energy balance equation, we reformulate the heat generation rate
based on the carrier energy loss and demonstrate the equivalence
of both approaches. The deterministic Boltzmann Transport
Equation (BTE) solver is validated under low-field conditions
using the distribution function and the mobility derived from
the relaxation time approximation. Additionally, we introduce
an approximation to address a non-removable singularity in
the mobility calculation. These results demonstrate the potential
of the deterministic BTE solver for predictive simulations of
self-heating effects and hot-carrier degradation in advanced
semiconductor devices.

Index Terms—validation, heat generation, carrier transport,
mobility, spherical harmonics expansion, conservation of energy

I. INTRODUCTION

As field-effect-transistors (FETs) scale down, the self-
heating effect becomes increasingly significant [1]. Accurate
simulation of this detrimental phenomenon — as it was
demonstrated by Pop et al. [2] by solving the Boltzmann
transport equation (BTE) with the Monte Carlo (MC) approach
— should be based on the phonon transfer rate, not Joule
heating. Another phenomenon detrimental to transistor perfor-
mance and intimately related to carrier transport is hot-carrier
degradation (HCD), often accelerated by self-heating [3], [4].
Precise modeling of HCD requires computation of the high-
energy tail of the carrier energy distribution function [5], [6].
However, the transient nature of the MC technique results in a
long CPU time to obtain an accurate high-energy tail, making
the deterministic BTE (D-BTE) solver essential.

To cover these two reliability concerns, we develop
imecSHE, a D-BTE solver using the spherical harmonics
expansions (SHE) method, based on the open-source BTE
solver ViennaSHE [7], [8]. Previous studies towards carrier
and phonon transport based on D-BTE solvers included heat
generation modeling of HBTs via the phonon energy transfer
perspective [9], [10]. Here, we approach this problem from the
carrier kinetic energy perspective and demonstrate these two
paradigms using a silicon n+/n/n+ structure. As the second
important goal of our work, we provide a procedure to validate
the D-BTE solver.

II. MODELS AND ASSUMPTIONS

The steady-state single-valley bipolar BTE is solved assum-
ing identical distribution functions across equivalent valleys.
To reduce the computational time, the SHE order is set to 1.

The Pauli principle is neglected due to its negligible impact
on the DC characteristics [11] of the bulk silicon for imecSHE
validation and the n+/n/n+ structure for heat generation
modeling. Scattering mechanisms, including acoustic phonon,
optical phonon, and impurity scattering are treated as isotropic.

III. VALIDATION

To validate imecSHE, a 100-nm silicon slab is used. We
first compare SHE coefficients fl,m (r, ε) of the distribution
function f(r,k) against the results obtained with the micro-
scopic relaxation time approximation (RTA) [12]. Next, we
validate the low-field carrier transport by comparing carrier
mobility vs. its analytical formulas, for which we circumvent a
non-removable singularity by an approximation we proposed.
Validation parameters are summarized in Table I.

TABLE I
PARAMETERS OF SI USED FOR CALCULATIONS.

Validation Calibration

Quantity Electron Electron Hole

α (eV−1) 0.0 [13] 0.5 [14] 0.935 [15]

mt/m0 0.295 [13] 0.19 [16] 1.15247 [17]

ml/m0 0.295 [13] 0.98 [16] 1.15247 [17]

E1 (eV) 9.0 [13] 7.5 (5.0 [18]) 3.00 (2.2 [19])
DtK (GeV·cm−1) 0.8 [13] 0.55 (0.55 [18]) 0.425 (0.50 [19])
ℏωop (meV) 38.8 [13] 25.0 (42.6 [18]) 62.0 (63.3 [19])

Note: α is the nonparabolicity factor; mt, ml are transverse
and longitudinal effective masses; E1 and DtK are defor-
mation potentials for acoustic and optical phonon scattering,
respectively; ℏωop is the optical phonon energy.

A. Distribution Function

Based on the RTA and the isotropic scattering approx-
imation [12], one can obtain the SHE coefficients of the
distribution function in a uniform electric field E:

fl,m(ε) = f eq(ε)

[
δl,0δm,0

Y 0,0
± eτ(ε)v(ε)

Y 0,0kBT
al,m
0,0

T
TTE

]
, (1)

where the upper (lower) sign is for holes (electrons), Y 0,0

the zeroth order spherical harmonics, ε the carrier kinetic
energy, τ(ε) the relaxation time, v(ε) the carrier velocity, al,m

0,0

the coupling coefficient defined in [20], T the Herring-Vogt
transform matrix [21], and f eq(ε) the Maxwell-Boltzmann
distribution function.



Fig. 1. The RTA validation results.

Fig. 1 compares the numerical result of imecSHE and the
theoretical result obtained with the RTA. Only f0,0(ε) and
f1,1(ε) are considered because the electric field is along the
x-axis. One can see that these results are in good agreement
and the average numerical-to-theoretical ⟨f1,1(ε)⟩ε/⟨f0,0(ε)⟩ε
ratio gradually deviates from 1 as expected. Therefore, we can
conclude that imecSHE can properly reproduce the theoretical
carrier energy distribution function.

B. Mobility Calculation and Singularity Treatment
Typically, the carrier mobility is calculated using the current

density, µij = Ji/ (neEj), but this approach does not allow
for analyzing contributions from individual scattering mech-
anisms. Therefore, we adopt the RTA-based mobility tensor
[20]. Using the SHE of the distribution function,

f(r,k) =
∞∑

l=0

l∑

m=−l

fl,m(r, ε)Y l,m(θ, ϕ), (2)

the mobility tensor µ(r) is given by:

µ(r) =

∫ ∞

0

µ (r, ε) dε. (3)

Here, the spectral mobility tensor µ (r, ε) is defined as

µ (r, ε) :=
e
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e
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where Z(ε) is the reduced two-spin density of states [20] and
Sl,m
k is the coupling matrix defined as
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∫

Ω

eke
T
kY

l,mdΩ =
δl,0δm,0

3Y 0,0
I +

δl,2

6
√
5π (Y 0,0)

2

×


−δm,0I +

√
3




δm,2 δm,−2 δm,1

δm,−2 −δm,2 δm,−1

δm,1 δm,−1

√
3δm,0





 .

(5)

However, from the isotropic relaxation time [12],

τ(ε) =

[
2π

Ne

∑

η

ση(ε)Z (ε+∆εη)

]−1

, (6)

where Ne is the number of equivalent valleys and ση(ε) is the
isotropic transition rate of the mechanism η, one can see that
dτ/dε in Eq. (4) introduces two singularities due to the Dirac
δ-function model in the Fermi’s golden rule. One of them is
removable due to elastic scattering with ∆εη = 0 and can be
regularized by combining v2 with dZ/dε. The other is non-
removable due to the inelastic optical phonon scattering with
∆εη = −ℏωη . We observe that the mobility follows the form

µ =

∫ ∞

ℏωη

g(ε)√
ε− ℏωη

dε+ C, (7)

where both g(ε) and C stand for non-singular terms. There-
fore, numerical integration overestimates or underestimates
the mobility depending on grid placement relative to the
singularity ε = ℏωη . To mitigate the numerical impact of this
singularity, we assume that g(ε) varies slowly in the vicinity
of ε = ℏωη and that the lowest node value above ℏωη on
the energy grid is ℏωη + ξ. The integral in Eq. (7) near the
singularity can thus be approximated as

∫ ℏωη+ξ

ℏωη

g(ε)√
ε− ℏωη

dε ≈ 2g

(
ℏωη +

ξ

2

)√
ξ, (8)

where g(ε) is approximated as g (ℏωη + ξ/2) when ξ is
sufficiently small, thereby making the singularity integrable.

Fig. 2. Electron mobility as a function of temperature and doping concentra-
tion at 0.3 kV·cm−1, calculated using validation parameters listed in Table
I. Markers ◦, □, ∆ represents donor concentrations of 0/1016/1.3 × 1017

cm−3, respectively.

Fig. 2 shows that imecSHE reproduces the analytical [13]
and experimental mobility [22] curves with good accuracy.
We employ two approaches for mobility calculations. The first
approach evaluates the mobility from the current density via
f1,1(ε) [20]. As for the second one, it relies on the RTA and the
mobility is calculated via f0,0(ε) as shown in Eq. (4). One can
see that the mobilities calculated from f0,0(ε) and f1,1(ε) are
identical. The left plot highlights the consistency of imecSHE
results with the theoretical predictions for phonon-limited mo-
bilities obtained by Jacoboni [13]. Because analytical models
for impurity scattering mobility involve approximations [13],
imecSHE’s results are compared with the experimental data
[22], as shown in the right plot of Fig. 2. However, an empir-
ical correction factor ζ (NA, ND) for the impurity scattering



rate is necessary, SCBH
(
k,k′) = ζ (NA, ND)S

BH
(
k,k′),

because the Brooks-Herring model assumes long screening
lengths valid only for low doping concentrations [12], [23].

IV. CALIBRATION

Fig. 3. Comparison of the carrier velocity calculated using imecSHE with
results from stochastic MC BTE [24], deterministic BTE [18], and experimen-
tal measurements [19], [25]. Parameter values obtained with the calibration
procedure are summarized in Table I.

To calibrate imecSHE, we use a 100-nm slab of undoped
silicon with ⟨111⟩ orientation. The full-band density of states
(DOS) [14] is used for electrons, but the effective mass is
retained for the Herring-Vogt transform [14] and the hole
DOS [15]. Fig. 3 depicts good agreement between velocity
calculated with calibrated imecSHE, the experimental data
[19], [25], and the results of both stochastic [24] and determin-
istic [18] BTE solvers. The decay of the mobility above 100
kV·cm−1 in Fig. 3 is presumably related to the enhancement of
scattering. Key parameters are summarized in Table. I, where
the acoustic and the optical phonon scattering parameters are
comparable with values reported in the literature [18], [19].

V. HEAT GENERATION MODELING

A. Validation against Conservation of Energy

We begin with the energy balance equation [26]:

∂u

∂t
= J ·E −∇ · Ju −R, (9)

where J , Ju, and R := − 2
Ωs

(∂f∂t )coll are the current density,
the energy current density, and the carrier kinetic energy
loss rate, respectively. Since phonons absorb the energy lost
by carriers, R is the actual heat generation rate. Assuming
isotropic scattering and neglecting the Pauli principle, the heat
generation rate R can be derived as

R =
Ne

(Y 0,0)
3

1∑

η=0

∫ ∞

0

[σ (ε, ε+ εη) f0,0(ε)Z (ε+ εη)

− σ (ε− εη, ε) f0,0 (ε− εη)Z (ε− εη)]Z(ε)εdε,

(10)

where ε0 = ℏω (ε1 = −ℏω) is the change of the carrier
kinetic energy due to phonon capture (emission). If the Pauli
principle is considered, the first and the second term within
the bracket needs to be multiplied with an additional factor of
1− f0,0(ε+ εη)Y

0,0 and 1− f0,0(ε)Y
0,0, respectively.

Fig. 4. Power components (left), heat generation (top right), and kinetic
energy (bottom right) profiles of a silicon n+/n/n+ structure with donor
concentrations of 1020/1016/1020 cm−3.

Fig. 4 presents the steady-state volume-integrated en-
ergy terms from Eq. (9) for a silicon n+/n/n+ device
(1020/1016/1020 cm−3). The left plot validates imecSHE’s
consistency via IV =

∫∫∫
J · Edr3, matching the input

power with the Joule heating. The equality between the input
power and the sum of the energy flux density and the heat
generation verifies energy conservation in the electron system.
The energy flux density is computed independently. The inset
of the left plot shows that less than 30% of input power
converts to phonon energy. The top-right plot shows that most
heat is generated in the drain, where electrons have enough
energy to emit optical phonons (see bottom-right plot). Despite
higher kinetic energy in the channel, the much lower electron
density (∼ 104 times smaller than in the drain) results in heat
generation comparable to that in the drain.

Fig. 5. Power density due to heat generation under 0.6V calculated
with imecSHE (with parameters parameters summarized in Table I) and
that obtained by Pop et al. [27] with an MC BTE solver. The silicon
n+/n/n+ structure consists of source, channel, and drain regions with
lengths of 100/20/100 nm and donor concentrations of 1018/1016/1018 cm−3,
respectively.

B. Equivalence of two interpretations of the heat generation

The heat generation rate in Eq. (10) apparently differs from
the one below commonly used in MC BTE solvers [2]:

R = ℏω
(
Sout,emission − Sout,capture)

= ℏω
(
Sin,emission − Sin,capture) ,

(11)

where S is the macroscopic intravalley scattering rate. Eq. (10)
and Eq. (11) correspond to carrier and phonon centric ap-



proaches to calculation of the heat generation rate, respec-
tively. The equivalence between Eq. (10) and Eq. (11) can be
easily shown by a change of variable in Eq. (10), substituting
ε = ε∗ + ℏω, so that the kinetic energy remains positive
for the DOS Z(ε∗). The same method applies to anisotropic
scattering, with the additional step of projecting the scattering
rate onto spherical harmonics.

C. Validation against stochastic MC BTE solver

Fig. 5 compares the heat generation rates calculated with
imecSHE and by Pop et al. [27]. The discrepancy between the
heat generation rates due to inelastic optical phonon scattering
(red lines) appears quite reasonable because the model of Pop
assumes 50.0 meV for optical phonon enenrgy, while imecSHE
uses 38.8 meV (Table I). Despite different parameters used
in these two transport simulators, the overall profiles are
comparable, thereby validating consistency of heat generation
modeling with imecSHE. The close agreement between the
rate Rop calculated with imecSHE and Rac + Rop obtained
by Pop et al. within the channel demonstrates the validity of
imecSHE for heat generation modeling.

VI. CONCLUSIONS

We present a deterministic Boltzmann transport equation
(D-BTE) solver imecSHE validated against simulation results
and experimental data. The validation procedure ensures that
imecSHE is capable of accurately modeling the low-field
transport and heat generation in Si-based devices. This pro-
cedure and the derived formulas should be of interest for the
community as they provide clear methodology for validating
D-BTE solvers. The equivalence between carrier and phonon
interpretations of heat generation is also demonstrated, thereby
ensuring that either interpretations can be employed.
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