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Abstract—We present an Artificial Intelligence (AI) flow to
implement device optimization to upgrade traditional trial-and-
error approach by technology computer aided design (TCAD)
simulations. We combine advanced Design of Experiment (DOE)
techniques with Machine Learning (ML) methods such as ran-
dom forest algorithm and neural network (NN) modeling. Careful
DOE design to sample the parameters space allows to build
TCAD-generated datasets with few tens of elements but, despite
that, suitable to build predictive virtual models connecting the
relevant input factors to the figure of merits (FoMs) of the
device. Finally, state-of-art optimization procedures are applied
to this virtual model to retrieve the optimized device input
parameters. We demonstrate such AI flow for a typical 1200V
SiC DMOS, although the illustrated procedure is technology and
target agnostic so can be easily extended.

Index Terms—Machine learning, random forest algorithm,
neural network, device optimization, TCAD, SiC DMOS.

I. INTRODUCTION

A critical part of research and development in microelec-
tronic industry consists in developing devices whose design
meets target specification, to ensure maximum energy ef-
ficiency, optimum behavior in the target circuit application
and the maximum number of devices per unit area. TCAD
modeling plays a pivotal role in device design. Traditional
TCAD approaches are mostly trial-and-error procedures by
expert designers, with the time to achieve target specifications
that can become prohibitively long. Thus, it is mandatory to
develop innovative strategies to boost the time-to-market and
to reduce development expenses. In this respect, ML and AI
techniques are currently regarded as essential steps to integrate
and upgrade TCAD strategies.

In this work, we present an AI device optimization flow that
merges state-of-art ML techniques with TCAD simulations
(Fig. 1). We test our approach over optimization of simulation
of physical processing aligned to typical industrial processes
for SiC DMOS rated at 25A, 1200V. We are able to retrieve
optimized process parameters under target of realistic spec-
ifications of breakdown voltage (BV) of 1800V (derating to
1200V), threshold voltage (Vth) of 3V and the lowest drain-
source on-resistance (RdsOn) possible. Key aspects of our
flow is easiness-to-set-up and the quite limited number (few
tens) of TCAD simulations needed for building the datasets
to implement ML techniques that yield accurate results. To-

Fig. 1. AI device optimization flow made by the screening step and the
response surface method (RSM) to produce the virtual model, and the
optimization step to retrieve input factors for the targeted device FoMs. Both
the screening and the RSM are based on ML techniques that build on DOE
TCAD-generated datasets.

date, attempts to couple TCAD and ML require a much more
significant number of simulations [1], [2].

II. TCAD SIMULATION OF 25A, 1200V SIC DMOS

The 2D geometry of a realistic 25A, 1200V SiC DMOS
is generated by a process simulation (Fig. 2) aligned to



Fig. 2. Schematics of process flow. An epitaxial layer is grown on top of
a highly doped substrate as drift region. Then, the JFET implant is made
across the entire surface through a thermally-grown, sacrificial oxide. Next,
the PWELL opening is defined by a deposited poly oxide mask stack, which
is oxidized after the PWELL implanting. The thermal oxide now masks for
the NPLUS source implant, thus the distance the oxide grows out laterally will
define the gatet length. A heavily doped contact area is obtqined by etching
through part of the NPLUS source implant and the PPLUS source implant
is made. Finally, the gate oxide is grown and the electrodes are deposited.
Highlighted in dark red are the sub-processes whose TCAD parameters have
been used as input factors for the screening step.

typical industrial methods, using TCAD Process simulator
[3]. In particular, JFET and PWell regions are each formed
by four implants. The processed geometry is meshed using
a delaunay meshing scheme, with implemented a number
of refinements strategies such as a fine mesh around the
location of the peak electric field for accurate breakdown
voltage simulations. The models for incomplete ionization of
impurities, bandgap narrowing, Fermi–Dirac carrier statistics,
Shockley–Read–Hall and Trap-Assisted Auger recombinations
are considered for device simulation with TCAD Device

simulator [4]. Alternative CVT mobility model is used for
low-field regime, combined with a parallel-field-dependent
mobility model. Finally, an interface charge of 2 × 1012

cm−2 and distributions of density of interfacial defect at 4H-
SiC/SiO2 interface are assumed. The area parameter width is
chosen to be typical of a 25A device. The threshold voltage
Vth is extracted at 5 mA on the drain after tiding it to the gate,
and ramping to a compliance of 25 A. RdsOn is extracted at a
gate voltage of 15 volts and 25 A on the drain. The breakdown
voltage BV is extracted at 0.1 pA while ramping the drain.

III. AI DEVICE OPTIMIZATION FLOW

We apply an AI flow to optimize the design of 25A, 1200V
SiC DMOS. This flow consists of three main steps: the screen-
ing, the response surface method (RSM), and the optimization
(Fig. 1). The combination of screening and RSM generates a
virtual model linking input process factors to device FoMs.
Then, optimization of FoMs is applied to the virtual model
and achieved quite rapidly since each optimization cycle does
not require anymore TCAD simulations.

We use ML tools from a statistical analysis software suite
[5] to perform each of the above steps. Random forest algo-
rithm, which builds several decision trees based on different
random subsets of training TCAD data, is used to screen
relevant input factors for a given target FoM. The output of
random forest is determined by taking the majority vote of the
individual trees, and it yields the ranking of importance among

Fig. 3. (a) Device geometry and net doping, with inset showing Source / Gate
region. Typical (b) output, (c) transfer and (d) Breakdown Voltage curves.
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Fig. 4. (a1 - a4) Plots of Vth model fit (blue) curves vs. ndrift (a1), PWImpE2
(a2), PWImpE3 (a3) and OxSpTimdata (a4). Red dots are the training dataset
and black dots are the test dataset. (b1 - b3) Plots of actual vs. predicted values
for RdsOn (b1), Vth (b2) and BV (b3). It is apparent the strong correlation
achieved for all three modeled FoMs.

input factors. Thus, for any target it is possible to evaluate the
most influential input factors by thresholding their importance
above a given value.

The next step is to use randomly selected train-
ing/validating/testing TCAD data from the sampled simula-
tions for the screened factors to build a ML multi-output
regression model of the device FoMs. We use the default
subsetting partition 80%:10%:10% ↔ {Training: Validating:
Testing} of all TCAD dataset, with Test dataset not included in
the Training dataset. The ML model is created using NN with
Feed-Forward architecture, with all nodes fully connected, and
activation flows from input layer to output one. Optimization
techniques are applied to find the NN parameters to fit the data.
We use default NN hyperparameters: one hidden layer, two
neurons for each screened input factor, and SoftPlus activation
function.

Finally, optimized input factors are retrieved from targeted
FoMs by means of Desirability function approach applied to
NN regression (NNR) model. The Desirability function ap-
proach is widely applied to optimize multiple-output models,
for example of industrial processes. It works as follows: each
output Yi is associated to a desirability function di(Yi) that
maps the possible values of Yi(x) to real numbers comprised
in the interval [0, 1]. di(Yi) = 0 is a completely undesirable
value of Yi, while di(Yi) = 1 is a completely desirable value.
The overall desirability D is calculated as the geometric mean
of all desirabilities {di(Yi)}i=0,...k. The overall desirability
is then maximized depending on each output Yi being maxi-
mized, minimized, or assigned to a target value [6].

Both the screening and the RSM steps build on datasets
generated by TCAD simulations whose values of input factors
are samples of the full TCAD parameters space. A typical
challenge is the number of input parameters involved into a
realistic simulation, which correlates to the amount of elements
of datasets necessary to derive accurate analysis. In this work,
we consider doses (Di) and energies (Ei) of the four PWell
implants, JFET width, gate length which is formed through
a self-aligned process and NDrift doping, for a total of 11
parameters. We set up the DOE project and run the TCAD
simulations [7]. We do not use full factorial (FF) DOE design
since such approach is sometimes redundant and scales steeply
with the number of inputs. We use advanced DOE design
features [7] to build datasets with limited number (few tens)
of TCAD simulations while still getting accurate results when
applying ML techniques to such datasets.

We screen four input factors that rank higher importance for
BV, Vth and RdsOn: NDrift doping (ndrift), PWell energies of
2nd (PWImpE2) and 3rd (PWImpE3) implant, and the oxide
growth time (OxSpTim). Then a second DOE is set up over
screened ndrift, PWImpE2, PWImpE3 and OxSpTim, whose
TCAD-generated dataset is used to build the NNR model.
We then review the performance of the model with different
methods. First we check how it fits against actual data by the
combined plot of model fit curves and data used to build the
model. Fig. 4 (a1 - a4) show representative plots for Vth. The
plots provide visual confirmation that the generated model for



BV, Vth and RdsOn is not affected by the issues of underfitting
or overfitting. We also analyze the correlation between actual
vs. predicted values to get a direct measure of the alignment of
model’s predictions with the actual values, to detect systematic
biases or errors. Fig. 4 (b1 - b3) show the strong correlation
between actual vs. predicted values for RdsOn (panel b1), Vth

(panel b2) and BV (panel b3). Such strong correlation is a
further validation of the model’s predictive power, ruling out
any overfitting.

The NNR model can be now used to predict the FoMs
for combinations of parameters values for which no TCAD
simulated results are available. For example, Fig. 5 show
colormaps projected on the various parameters planes of sliced
3D cross-sections of generated 5D Vth response surface. They
provide a visual assessment of the various trends of Vth. Also,
Desirability function approach can be applied to the NNR
model to retrieve optimized input values for targeted BV, Vth

and RdsOn. Predicted values of input parameters are showcased
in Table I. For final benchmark, we perform TCAD simulations
with optimized input parameters and extract the corresponding
FoMs. We find that TCAD results (Table II) well compare with
targeted values.

TABLE I
OPTIMIZED INPUT FACTORS FROM NNR MODEL

Input Factor NNR Model
ndrift 7.83E15 cm−3

PWImpE2 373.6 keV
PWImpE3 88.81 keV
OxSpTim 750 s

TABLE II
FOMS DERIVED FROM TCAD SIMULATIONS AFTER OPTIMIZED INPUT

FACTORS

FoM NNR Model Targets
BV 1847.2 V 1800 V
Vth 3.1 V 3 V

RdsOn 91.3 mΩ lowest

IV. CONCLUSION

In this work we have illustrated an AI flow for device
optimization based on TCAD simulations. We have used
advanced DOE techniques and ML methods such as random
forest algorithm and NN regression modeling. By sampling
the parameters space with well-designed DOE we demon-
strate that TCAD-generated datasets with just few tens of
elements are nonetheless suitable to build predictive virtual
models connecting the relevant input factors to the FoMs of
the device. Finally, state-of-art optimization procedures are
applied to this virtual model to retrieve the optimized device
input parameters. We find that predicted FoMs well compare
against FoMs from TCAD simulation with optimized input
parameters, validating our AI flow for device optimization.
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Fig. 5. (a - f) Colormaps of sliced 3D cross-sections of 5D Vth response
surface projected on the various parameters planes: ndrift - PWImpE2 (a),
ndrift - PWImpE3 (b), ndrift - OxSpTim (c), PWImpE2 - PWImpE3 (d),
PWImpE2 - OxSpTim (e), OxSpTim - PWImpE3 (f).

We would like to highlight that the proposed AI device
optimization flow is technology and target agnostic and then
it can be easily extended.
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