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Abstract—We present a new Gaussian 

approximation potential (GAP) for the Ga-N-Mg 

system, developed to accurately describe GaN 

containing point defects and Mg impurities. By 

carefully sampling a diverse set of defect-containing 

and doped structures, the potential reproduces the 

formation energies and diffusion barriers of point 

defects in GaN as calculated by density functional 

theory. Specifically, the GAP reproduces formation 

energies within a maximum deviation of 1.9 eV and 

diffusion barrier energies within 0.4 eV. This 

potential enables large-scale molecular dynamics 

simulations of defect dynamics in GaN, including the 

effects of Mg doping. 
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I. INTRODUCTION 

Ion implantation is a key technique for doping 
semiconductors in power switching devices due to its 
cost-effectiveness and reliability. However, p-type 
doping of wurtzite GaN—one of the most promising wide 
band-gap semiconductors [1]—by Mg ion implantation 
remains challenging because of the resulting low carrier 
concentration. This issue is mainly attributed to the 
formation of residual defects, such as vacancy 
complexes and Mg segregation, induced during the 
implantation and the subsequent annealing [2]. The 
distribution of the defects results from interactions 
among them at the atomic scale, and depends on the 
processing conditions [3-5]. Understanding the dynamic 
behavior of these defects under different processing 
conditions is therefore crucial. Despite extensive 
experimental investigations to reveal the atomic-scale 
configurations and dynamics of the implantation-
induced defects [6,7], the underlying mechanisms are 
still under discussion.  

Molecular dynamics (MD) simulation is a highly 
effective method of analyzing defect behavior at the 
atomic scale. Although MD simulations based on 
density functional theory (DFT) provide the most 
reliable trajectories of atoms, the high computing cost 
makes it impractical to analyze large-scale models that 
include multiple defects in hundreds of atoms. Classical 

MD simulations have much lower computing costs. 
However, accurate and robust atomic interactions were 
difficult to define, resulting in limited insight into defect 
behavior [8,9]. Recent advances in machine-learned 
(ML) interatomic potentials have enabled large-scale 
simulation with accuracy comparable to that of DFT 
[10]. An interatomic potential applicable to MD 
simulations has also been reported for a Ga-N system 
using a neural network [11]. Nevertheless, developing 
an accurate potential that is transferable to systems 
containing both GaN and impurities like Mg is not trivial, 
because the configurational space grows significantly 
with the number of elements involved. 

In this study, we develop an ML interatomic potential 
(IAP) to model defect behavior in GaN with Mg, 
enabling efficient and accurate simulation of defect 
dynamics in doped GaN systems.  

II. METHODS 

The Gaussian approximation potential (GAP) 
[12,13] was employed as the IAP. GAP was selected for 
its favorable balance between accuracy and 
computational cost. Compared to the moment tensor 
potential (MTP), GAP provides higher fidelity in 
capturing complex atomic interactions, while neural 
network potentials may offer similar or even higher 
accuracy at a higher computational cost. We 
incorporated two-body and three-body interactions and 
the smooth overlap of atomic positions (SOAP) 
descriptor [14] to predict energy, as expressed in the 
following equation:  
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where d indexes the descriptor type (i.e. 2-body, 3-body, 

and SOAP descriptors), �
��	
 are descriptor vectors for 

input environment i, ����	
 are regression weights at the 

sparse training point j, and  
��	is the kernel function 
for descriptor d. 

Training data were derived from DFT calculations of 
cohesive energies and atomic forces, performed using 
Quantum ESPRESSO [15] with ultrasoft 
pseudopotentials and generalized gradient 
approximation for the exchange-correlation functional. 
Gallium 3d electrons were explicitly included in the  



 

 

 

Fig. 1 Typical training structures: (a) GaN surface, (b) GaN with Mg defects, (c) distorted structures annealed at 
5000 K, and snapshots of (d) molecular dynamics simulation and (e) barrier energy calculation by GAP. 

valence shell. The cutoff energy was set to 680 eV and 
the k-space mesh was set below 0.08 Å-1. All energy 
calculations were conducted under a neutral charge state. 

We sampled atomic configurations from wurtzite 
GaN structures containing vacuum slabs and/or point 
defects, as shown in Figs. 1(a,b). To improve the GAP 
model’s robustness, we also included virtual metastable 
crystals and distorted structures generated by first-
principles MD simulations with various stoichiometries 
[Fig. 1(c)]. In addition, snapshots from MD simulations 
[Fig. 1(d)] and structures along diffusion pathways for 
barrier energy calculations by the nudged elastic band 
(NEB) method [Fig.1(e)]. These calculations were 
performed with our trained GAP model using the quip 
pair style implemented in the large-scale 
atomic/molecular massively parallel simulator 
(LAMMPS) [16]. The final dataset consisted of 4,950 
structures, randomly divided into training and test data 
in an 8:2 ratio.  

III. RESULTS AND DISCUSSION 

A. Training of GAP 

Figs. 2(a,b) show comparisons of cohesive energies 
and atomic forces predicted by the trained GAP model 
against reference DFT values. The root mean square 
errors (RMSE) for both energy and force of the test data 
(8.1 meV/atom and 0.41 eV/Å) are comparable to those 
of the training dataset, indicating no serious overfitting.  

All predicted energies fall within 0.5 eV/atom of the 
corresponding DFT values. For wurtzite GaN structures 
containing defects or vacuum slabs, the deviation 
remains below 0.2 eV/atom, highlighting the IPA’s high 
accuracy for capturing defects in GaN. 

B. Formation energy 

To validate the obtained GAP specifically for point 
defects in GaN, we calculated the formation energies of 
the defects. The formation energy E(X) of a defect X at 
a neutral charge state was calculated as using: 
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where Etot(X) and Etot(bulk) are the total energies of a 
point defect X and a perfect crystal GaN, respectively. ni 
is the number of atomic species i added (ni > 0) or 
removed (ni < 0) from the pristine compound. μi is the 
chemical potential of the atomic species i.  

The formation energy of each defect represents its 
relative stability compared to a perfect crystal and 
determines its existence ratio in the ground state or under 
ideal thermal equilibrium conditions. In this study, we 
used 4×5×3 supercells of a primitive GaN cell, with 
lattice constants a, b, and c obtained by geometry 
optimization in DFT as a = b = 3.222 Å and c = 5.824 Å, 
respectively. The k-space mesh in the DFT calculation 
was set to 2×1×1. The chemical potential was set to Ga-
rich condition assuming equilibrium between Ga and 
GaN, and between N and Mg3N2. The energy was 
calculated following geometry optimizations with fixed 
lattice constants. 

Fig. 3 compares the formation energies of point 
defects in GaN under Ga-rich conditions, as calculated 
by DFT, our GAP model, and CHGNet without tuning 
[17]. The formation energies obtained by DFT were in 
good agreement with the reported results [18,19]. 
CHGNet is a pre-trained universal machine learning 
potential that serves as a general baseline for further 
training but is computationally more expensive than 
GAP and not tailored to specific materials.  

 

 

Fig. 2. (a) Cohesive energy and (b) atomic force 
comparison between DFT and our GAP model. 



 

 

 

Fig. 3. Formation energies of defects in GaN calculated by DFT, our GAP model and CHGNet. 

Our GAP reproduced the DFT-calculated formation 
energies within a maximum deviation of 1.9 eV. In 
contrast, the pre-trained CHGNet had a larger deviation 
of more than 4.5 eV. This represents a significant 
improvement over CHGNet, primarily because our GAP 
training was focused specifically on defect 
configurations in GaN. In particular, the accuracy of the 
formation energies of vacancy complexes such as VGaVN 
and (VGaVN)3, has improved, indicating that our GAP is 
well-suited for analyzing the defect recovery mechanism 
during post-implantation annealing, where these 
vacancy complexes play a crucial role [3].  

C. Diffusion barrier energy 

We validated our GAP in more detail using diffusion 
barrier energies. Diffusion barriers of defects introduced 
by ion implantation influence the evolution of defect 
configurations during the fabrication process. We used 
the 4×5×3 supercell of GaN, which was identical to the 
formation energy calculations. The k-space mesh was set 
to 1×1×1 for DFT-NEB calculations.  

Fig. 4 shows the barrier energies of defect diffusion 
in GaN calculated by the climbing-image NEB method. 
The barrier energies obtained by DFT were consistent 
with the previous DFT results [20,21]. Our GAP model 
is able to reproduce the barrier energies within 0.4 eV. 
The pre-trained CHGNet had a larger deviation of at 
least 1.4 eV. Compared to CHGNet, our GAP model 
achieves better agreement, indicating improved 
accuracy not only near equilibrium but also along defect 
migration paths. 

The diffusion barrier of a Mg interstitial along 
GaN[0001] direction (Mgi-c) in Fig.4 (b) predicted by 
our GAP model was lower than that along GaN[1-100] 
direction (Mgi-a). Fig. 4(c) shows the barrier energies of 
Mgi calculated by GAP. Smooth energy profiles are 
obtained regardless of the diffusion direction. This 
anisotropic diffusion behavior  is qualitatively consistent 
with DFT, but it is not captured by CHGNet or by an 
established classical potential [8]. These results 
underscore the effectiveness of our GAP model in 

capturing both static and dynamic defect properties in 
GaN. Because the segregation and diffusion of Mg 
during annealing have been reported to vary greatly 
depending on the implantation conditions [2,5], we 
expect that the accurate atomic-level analysis with our 
GAP will help reveal the mechanisms of Mg behavior, 
leading to guidelines for improving Mg ion implantation 
control. 

IV. CONCLUSION 

In this work, we developed a GAP interatomic 
potential for GaN systems containing point defects, 
vacancy complexes, and Mg impurities, which are 
critical to understanding p-type doping of GaN. The 
trained GAP accurately reproduces the DFT-calculated 
formation energies and diffusion barriers without signs 
of overfitting. 

Our GAP enables large-scale MD simulations of 
defect dynamics in GaN, offering a valuable tool for 
gaining deeper insight into Mg ion implantation and 
guiding the optimization of p-type doping processes. 
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Fig. 4. (a) Barrier energies of defects in GaN calculated 
by DFT, our GAP model, and CHGNet. (b) Lateral view 
of diffusion paths for a Mg interstitial along GaN[0001] 
(Mgi-c) and [1-100] (Mgi-a) directions. (c) Energy 
profiles of the diffusion paths obtained by our GAP 
model. 
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