Quantum Algorithms for Simulating Quantum
Transport via the Time-Dependent Open-System
Schrodinger Equation

Satofumi Souma’
Department of Electrical and Electronic Engineering, Kobe University, Kobe 657-8501, Japan
femail: ssouma@harbor.kobe-u.ac.jp

Abstract—We propose and demonstrate a quantum circuit-
based framework for simulating quantum transport phenomena
governed by the time-dependent Schrodinger equation for open
quantum systems. While the theoretical formulation is compatible
with large-scale classical simulations, its implementation as a
quantum algorithm offers a promising path toward quantum-
accelerated modeling of nanoscale devices. A key challenge in
such simulations lies in incorporating dissipation and particle
injection processes arising from coupling to external reservoirs. In
this work, we present quantum circuit constructions that explic-
itly encode these effects using controlled rotations, measurement-
induced decoherence, and reset operations. By comparing the
results of our quantum simulations with those obtained from
classical numerical solutions of the open-system Schrodinger
equation, we confirm that the proposed quantum model can
reproduce both transient dynamics and steady-state behavior.
These results validate the physical fidelity of the approach
and highlight the potential of quantum computing in electronic
transport simulations.

I. INTRODUCTION

In recent years, rapid advances in quantum computing
technologies have led to active research on applying quan-
tum computers to real-world problems across various fields.
Among quantum computing algorithms, the Quantum Fourier
Transform (QFT) and its application, the Quantum Phase
Estimation (QPE) algorithm, stand out for their distinct char-
acteristics. These algorithms have long been central topics
of research, particularly in solving eigenvalue problems and
systems of linear equations [1, 2], and continue to evolve.
Moreover, their potential applications are being explored in
areas such as quantum chemistry, materials design, and fi-
nancial engineering, with ongoing efforts to optimize them
for specific problems. More recently, research on algorithms
tailored for Noisy Intermediate- Scale Quantum (NISQ) de-
vices is progressing rapidly. These algorithms, which utilize
hybrid quantum-classical methods, are expected to provide
feasible solutions to real-world problems even within the
current limitations of quantum hardware.

Notably, variational quantum algorithms (VQAs) have been
proposed to solve partial differential equations such as the
Poisson equation, which plays a central role in electrostatics
and quantum transport modeling of semiconductor devices [3—
5]. These approaches leverage the expressive power of pa-
rameterized quantum circuits and hybrid quantum-classical

optimization to approximate solutions to problems that are
otherwise computationally demanding on classical hardware.

Building on this trend, Yang and Guo have recently pro-
posed a variational quantum algorithm tailored for solving
the quantum transport equation in semiconductor devices [6].
This work demonstrates the feasibility of incorporating quan-
tum transport formalisms, such as those based on the non-
equilibrium Green’s function (NEGF) framework [7], into
the quantum computing paradigm. Such developments are
particularly important in the context of nanoscale transistors,
where quantum confinement and tunneling effects dominate
charge transport.

In this paper, we explore an alternative approach that applies
quantum algorithms to quantum transport simulations based on
the time-dependent Schrodinger equation for open quantum
systems. While this method is already applicable to large-
scale systems using classical numerical solvers [8], translating
it into a quantum algorithm may offer future advantages.
Furthermore, this approach can be seen as an extension of
previously studied quantum algorithms for isolated systems,
allowing us to leverage existing insights.

Recent studies have proposed quantum algorithms that
directly tackle open quantum system dynamics, such as an
efficient scheme using only a single environmental qubit
to simulate dissipation [9], and a variational approach for
general quantum processes including non-unitary evolutions
[10]. These works provide valuable foundations, but they
have not been directly extended to model quantum transport
phenomena in nanoscale devices with structured environments
and spatially resolved observables. Extending the quantum
algorithms to transport-oriented open systems necessitates ad-
dressing two key elements: the effects of coupling to electrodes
and the injection of particles from the electrodes. This study
will provide a detailed discussion on potential methods to
incorporate these effects into quantum algorithms.

II. THEORETICAL METHOD

A. Quatntum transport theory based on the time-dependent
open-space Shriodinger equation

The time-evolved state vector in the presence of a perturba-
tion H' can be expressed using a Dyson-like integral equation



involving the retarded Green’s function G" as:
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where G(t,t') is the time-dependent Green’s function. To
describe transport in open quantum systems, it is convenient
to partition the system into three regions: the left (L) and
right (R) electrodes, and the central device region (C). Then,
focusing on the central region and assuming the wide-band
limit approximation, we can derive the equation of motion for
its wavefunction |W¢ ()) as
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where X(2/8) is the self-energy due to the left/right electrode.
By emplying the Crank-Nicolson scheme we obtain
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with H, = Hc + X(e).

In quantum transport simulations of nanoscale semiconduc-
tor devices such as nanowire FETs and nanosheet FETs, it is
often reasonable to reduce the problem to a one-dimensional
problem along the transport (current flow) direction, where the
transverse directions are typically treated in momentum space
or using a mode-space approach.

In this approach, the Hamiltonian of the central region
consisting of NV sites within the finite-difference scheme can
be written as:
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where ¢; represents the on-site energy at site ¢, and thop =
h2/2m*a? is the hopping amplitude between nearest-neighbor
sites (a is the lattice spacing). The ket |i) denotes the localized
state at site ¢ in the position (site) basis. The first term in
Eq. (4) describes the potential energy of the system. Then the
equation (3) can be solved numerically by using conventional
(classical) computers in general.

B. Hamiltonian in quatntum algorithm for time-dependent
open-space Shrodinger equation

In quantum algorithm, we employ the single-particle ap-
proach, which treats the system as a one-particle problem and
directly represents the wavefunction over a discretized real-
space basis. For example, a tight-binding Hamiltonian Eq. (4)
of dimension N = 2" can be mapped directly onto an n-
qubit Hilbert space. In this representation, the quantum state
l) € C?" is interpreted as the full wavefunction, and the

Hamiltonian Eq. (4) is decomposed into a linear combination
of tensor products of Pauli operators:
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C. Quantum circuit model for an open quantum system with
dissipation and injection

Next we consider a quantum computational model for sim-
ulating an open quantum system consisting of a system qubit
(single qubit for simplicity) and three types of environment

qubits. The full register includes the system qubit gy, a chain
(@)

of dissipative environment qubits g, (¢ =0,..., Ngis — 1), a
decoherence channel qubit g4ch, and an injection environment
qubit gipj.

At each time step t, the circuit implements the following
sequence of operations. First, the system qubit undergoes
unitary evolution via a single-qubit rotation around the x-axis:

Usys (t) =R, (5¢)7

where whop = thop/h is the effective hopping frequency
derived from a discretized tight-binding model. Next, the
system qubit interacts with the dissipative environment. It is
first coupled to the leading dissipative qubit via a controlled-
R, gate with angle fy;s, and then the dissipation propagates
through the chain of environment qubits via nearest-neighbor
CRX gates:

5QZ5 = whop . At,
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where we employed 604 = m/3 To model decoherence,
each dissipative qubit q((;i)s is further coupled to a shared
decoherence channel qubit gqc, through a controlled-R,, gate
with angle 641, followed by projective measurement and reset
of gdch:

Udeh = CRe(0aen),

where we employed O4cn, = 57/6.

Injection from the environment is realized by two steps.
First, the system qubit is partially entangled with the injection
qubit using a controlled-R, gate:

Uinj,1 = CRg(6inj),

with 6iy; = /2. Then, bidirectional entanglement is estab-
lished between the injection qubit and the dissipative environ-
ment qubits via successive CRX gates:
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followed by measurement and reset of the injection qubit.

The combined dynamics of the system under unitary evolu-
tion, dissipation, decoherence, and injection are simulated over
multiple time steps, with measurement performed at each step
to extract the probabilities of the system qubit being in |0)
and |1), as well as the occupation states of the environment
qubits.



III. RESULTS AND DISCUSSIONS

Figure 1 presents a reference example to illustrate the ba-
sic concepts of potential-induced tunneling and transmission.
While this one-dimensional potential barrier is not the main
focus of the present study, it serves to highlight the expected
quantum mechanical behavior such as wavefunction attenua-
tion and energy-dependent transmission. The corresponding
results were obtained using a classical algorithm, and this
example is used here solely for illustrative purposes.
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Fig. 1. Fig. 1. (Left) A representative example of the one-dimensional
potential barrier considered as a reference case. (Top right) Corresponding
probability distributions of the wavefunction for various barrier heights
(V' =0, 0.1thop, and 0.2tpep). (Bottom right) Energy-dependent transmission
probability obtained using the classical algorithm. This simple model is shown
here for illustration and will not be the focus in the subsequent sections.

For the quantum algorithm, since in this study we focus on
the conceptual proposal of the quantum algorithm, we restrict
first restrict our attention to the two sites N = 2" =2 (n = 1)
model with ; = 0, m* = 0.067mg and ¢ = 1 nm.

Figure 2 illustrates the time evolution of the occupation
probabilities in a two-level system under three distinct con-
ditions. In the top panel, representing the closed system, the
electron exhibits ideal coherent oscillations between the left
and right sites, indicating the unitary nature of the time evolu-
tion in the absence of environmental coupling. In contrast, the
middle panel corresponds to an open system subject to pure
dissipation. Here, the amplitude of oscillations decays rapidly,
and the probability density vanishes over time, reflecting the
irreversible loss of information to the environment and the
resulting decoherence.

In the bottom panel, an injection term from external reser-
voirs is incorporated in addition to the dissipative coupling.
As a result, the system evolves toward a non-equilibrium
steady state (NESS), characterized by persistent but damped
fluctuations around non-zero occupation probabilities. This
regime captures the essential features of realistic open quan-
tum transport systems, where decoherence and continuous
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Fig. 2. Time evolution of the probabilities of finding the electron at the left
site |0) (blue) and the right site |1) (orange), calculated using the classical
algorithm. (Top) Coherent oscillation in a closed two-site system. (Middle)
Damped oscillation in an open system with pure dissipation. (Bottom) Non-
equilibrium steady-state behavior in an open system including both dissipation
and injection from the electrodes.

energy exchange coexist. The distinct behaviors observed
across the three panels clearly demonstrate the transition from
a fully coherent regime to a decohered, open quantum system
with steady-state injection.

Figure 3 presents the results obtained from the quantum
circuit model under three different configurations: closed sys-
tem (top), open system without injection (middle), and open
system with injection (bottom). The circuit implementation
captures the distinct dynamical behaviors associated with each
configuration.

In the closed system case, the expected coherent oscillations
are clearly observed, demonstrating coherent population trans-
fer between the two basis states. This behavior is consistent
with the classical result, confirming that the unitary part of the
system Hamiltonian is faithfully reproduced by the circuit.

In the open system without injection, the quantum sim-
ulation exhibits rapid damping of the oscillation amplitude,
indicating decoherence due to system-environment coupling.
While the transient dynamics show slight fluctuations that
are less prominent in the classical simulation, the overall
trend-exponential decay toward zero population-is preserved.
This confirms that the dissipative effect introduced by the
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Fig. 3. Time evolution of the probabilities of finding the electron at the left
site |0) (blue) and the right site |1) (orange), calculated using the quantum
algorithm. (Top) Coherent oscillation in a closed two-site system. (Middle)
Damped oscillation in an open system with pure dissipation. (Bottom) Non-
equilibrium steady-state behavior in an open system including both dissipation
and injection from the electrodes.

measurement-based environment modeling effectively mimics
irreversible loss of coherence.

Importantly, in the open system with injection, the quantum
model successfully reproduces the emergence of a nonequi-
librium steady state. The population probabilities converge
to finite values rather than decaying to zero, as expected
when continuous inflow compensates for dissipative loss. This
steady-state behavior agrees well with that observed in the
classical calculation, validating the use of the quantum circuit
for simulating transport-like phenomena.

These results collectively indicate that the quantum cir-
cuit implementation not only captures coherent dynamics but
also effectively models dissipative and driven behaviors in
open systems. The long-time behavior, in particular, shows
good agreement with classical simulations, demonstrating the
capability of the circuit-based approach to approximate the
asymptotic regime essential for transport analysis.

IV. CONCLUSION

In this work, we proposed a quantum circuit-based
framework to simulate quantum transport governed by
the open-system Schrodinger equation. By incorporating
system-environment interactions via parametrized gates and

measurement-based decoherence, we modeled both dissipation
and injection processes.

We analyzed system dynamics across three configurations-
closed, open without injection, and open with injection-and
found good agreement with classical simulations in both
transient and steady states. The observed emergence of steady-
state behavior highlights the framework’s potential to capture
nonequilibrium quantum dynamics.

This approach lays the groundwork for simulating transport
in nanoscale systems, and future extensions will target multi-
site systems and more realistic reservoir dynamics modeling.
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