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Abstract—The exchange interaction has been successfully used
to mediate qubit entanglement in various semiconductor quan-
tum devices. Using the finite-element method, we combine a
nonlinear Poisson solver with single- and many-body Schrödinger
solvers to simulate the exchange interaction between a pair
of spin qubits in a fully depleted silicon-on-insulator (FD-SOI)
device. We also modify the Poisson solver to account for charge
impurities and evaluate the effect of a single impurity on the
exchange interaction strength, including its dependence on the
impurity’s position. The effect of the impurity on the exchange
strength is then analyzed to calculate the average two-qubit gate
fidelity achievable via the exchange interaction when the system is
subject to charge noise arising from a charge randomly tunneling
in and out of an interface impurity trap. The presented approach
demonstrates the possibility of simulating key quantum-device
performance metrics, such as two-qubit gate fidelity, starting only
from the device geometry.

Index Terms—FD-SOI, two-qubit gate, exchange, charge noise

I. INTRODUCTION

Due to their compatibility with industrial semiconductor
fabrication processes, electron spins confined to silicon quan-
tum dots have emerged as a main qubit candidate in scal-
able quantum information technologies [1]. Because quantum
systems operate based on principles that are not applicable
to classical systems (e.g. superposition, entanglement), spe-
cialized (TCAD) tools are required to simulate these sys-
tems. In this work, we developed such a tool to under-
stand tunneling and exchange of electrons confined to neigh-
boring quantum dots, within the Quantum Technology
Computed-Aided Design (QTCAD®) framework [2]–
[5]. We apply this tool to a model fully depleted silicon-on-
insulator (FD-SOI) double-dot device, inspired by STMicro-
electronics standard fabrication processes, but with dimensions
comparable to state-of-the-art two-qubit MOS devices [6] (see
Fig. 1). Moreover, we explore how charge noise in the form of
a fluctuating point-charge defect at the Si/SiO2 interface can
affect the fidelity of a quantum two-qubit gate implemented
using the exchange interaction.
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Fig. 1. Double-dot FD-SOI device inspired by STMicroelectronics’ standard
fabrication processes. (a) 3D model of the device. (b) Cut in the yz plane along
the green dashed line. Five top gates, two plunger gates (orange surfaces),
P1 and P2, and three barrier gates, B1, B2, and B3 (blue surfaces) provide
tunability for confinement and tunneling respectively. Notably, gate B2 is used
to control the interdot tunneling. A thin layer (2 nm) of SiO2 separates the
gates from the undoped silicon channel (mint green region) where a double-
dot confinement potential is formed for suitable applied voltages to the top
gates, one dot below each plunger gate. Doped source and drain regions with
n = 1020 cm−3 (dark green region) act as electron reservoirs and Ohmic
contacts enforce charge-neutral equilibrium across the identified boundaries
(yellow surfaces). The rest of the device is SiO2 (gray regions). The device is
also equipped with a back gate (purple boundary) separated from the channel
by a buried oxide layer (BOX, 10 nm) which is used to put the bottom of the
structure at equilibrium with the rest of the substrate which has background
doping of n = 1015 cm−3. The width of the channel along the x direction
is 40 nm.

II. POISSON AND SCHRÖDINGER SOLVERS

A model of the device we investigate is depicted in Fig. 1.
We generate a finite-element mesh over this model to discretize
the equations we solve and start the simulation workflow
by solving the nonlinear Poisson equation which relates the
electric potential ϕ(r) to the charge density ρ[ϕ]

−∇ · [ε(r)∇ϕ(r)] = ρ[ϕ], (1)

where ε(r) is the electric permittivity. Additionally, the poten-
tial ϕ(r) is subject to the boundary conditions

ϕ(r) = ϕi ∀r ∈ Σi, (2)



where i runs over the eight gates/contacts depicted in Fig. 1
(the plunger gates P1 and P2, the barrier gates B1, B2, and B3,
the back gate, and the source and drain Ohmic contacts) and ϕi
is the value of the potential at the surface Σi which is enforced
by the device gates/contacts [nongray surfaces in Fig. 1 (a)].
In (1), the charge density is computed by filling parabolic
bands according to the Fermi-Dirac distribution, except in the
channel below the top gates [outlined with the white dashed
line in Fig. 1 (a)] where quantized charges are expected to
be located. In this region, the charge density ρ[ϕ] is set to
zero. We solve the nonlinear Poisson equation at a constant
cryogenic temperature [7], T = 100 mK, where we expect
the device to operate. At low temperatures, ρ[ϕ] depends
exponentially on ϕ, leading to convergence issues which are
circumvented using adaptive meshing [3].

For a range of voltages VB2 applied to the barrier gate
B2, we solve the nonlinear Poisson equation to obtain ϕ(r)
and the associated confinement potential V (r) (given by the
conduction-band edge). The confinement potential is input
into the single-particle Schrödinger equation, which is solved
under the effective-mass approximation for a single z-valley,
to obtain eigenfunctions ψi(r) and eigenenergies εi. For each
VB2, we tune the system to the symmetric configuration
(by adjusting the plunger-gate voltages), characterized by
the electron being equally distributed between both dots and
the energy splitting Ω between the (delocalized) ground and
the first-excited states being minimal (see Fig. 2). In this
configuration, Ω = 2tc, where tc/h represents the tunneling
rate between the dots, and h is Planck’s constant. Therefore,
by minimizing Ω with respect to the plunger-gate detuning,
we can compute tc.

Fig. 2. Energy splitting, Ω, of the ground and first-excited states in the
symmetric configuration of the double-dot system depicted in Fig. 1, as a
function of VB2. The exchange frequency, J/h, versus VB2 is plotted in red.
Inset: Equipotential surface (green) and equiprobability surface of the ground-
state wavefunction (red) for VB2 = 0.57 V in the symmetric configuration,
showing the electron shared between both dots. The colors of the rectangular
gates match those in Fig. 1.

III. EXCHANGE CALCULATION

Two-qubit gates have been demonstrated in (silicon-based)
MOS devices using the exchange interaction between neigh-

boring dots [6], [8]. The exchange Hamiltonian, which gener-
ates this interaction, is given by HJ = JS1 ·S2, where J is the
strength of the interaction and Si is the spin of the electron
in dot i. Exchange is a consequence of the Pauli exclusion
principle and can be derived by solving a quantum many-body
Hamiltonian. In particular, J is given by the energy splitting
between the spin singlet and triplet states ∆ST in a system of
two electrons, i.e., J = ∆ST . Accordingly, we construct the
many-body Hamiltonian accounting for Coulomb interactions
between electrons in the two-electron subspace, using (28 spin-
degenerate, i.e. 56) single-particle orbitals ψi(r) (computed by
diagonalizing the single-body Hamiltonian, see section II) as
a basis. This Hamiltonian is diagonalized to extract J = ∆ST .
Fig. 2 demonstrates how J can be tuned by several orders of
magnitude using the voltage applied to B2, VB2.

IV. INTERFACE CHARGE

Next, we investigate how J is affected by a charge impurity
located at the interface between the silicon channel and the
oxide that separates it from the gates. This impurity can be
thought of as an electron (or hole) tunneling in and out of
an interface impurity trap and is modeled using a Gaussian
charge-density profile spread over a radius σ = 1 Å with
total charge q = ±e. Because σ is much smaller than the
dimensions of the device, we consider the impurity to be a
point charge. The associated charge density is given by

ρR(r) =
q

(2π)3σ3
e−

(r−R)2

2σ2 , (3)

where R is the position of the charge trap/impurity.
Including this charge density on the right-hand side of

(1) leads to screening of ρR(r) by the (continuous) charge
density ρ[ϕ]. Therefore, to account for this extra charge, a
modified version of the Poisson equation is solved. First,
as in the impurity-free case described above, we solve the
nonlinear Poisson equation subject to the boundary conditions
of (2). Then, we also solve the linear Poisson equation
−∇ · [ε(r)∇ϕR(r)] = ρR(r), accounting only for the point
charge, and enforce the boundary conditions

ϕR(r) = 0 ∀r ∈
8⋃

i=1

Σi. (4)

The full solution for an impurity at position R is taken to be
ϕ(r) + ϕR(r).

To properly capture the features of the point charge, it
is necessary to construct a well-suited finite-element mesh.
In addition to the adaptive meshing required to converge
the nonlinear Poisson equation at cryogenic temperatures, to
resolve the features of the impurity, the characteristic length
of the mesh near the impurity is forced to be σ/5. The meshes
used in the simulations presented here contain ∼ 8×105 nodes.

We place a single point charge at various locations at the
Si/SiO2 interface (near the gates P1, B2, and P2) and solve
the Poisson equation to obtain the confinement potential V (r)
(see Fig. 3). Then, the many-body Hamiltonian is diagonalized
to map out the exchange as a function of charge-impurity



position [see Fig. 4 (a) and (b)]. In this case, to limit
the computational resources used during the simulations, we
used a basis comprised of 16 spin-degenerate single-particle
orbitals. This number of orbitals led to values of exchange that
are within 1% of the values presented in Fig. 2 (computed with
28 spin-degenerate single-particle orbitals) in the impurity-free
calculation.

Since J is a consequence of the Coulomb interaction, it
increases as the distance between electrons decreases. With
this in mind, we can understand the qualitative features of the
results displayed in Figs. 4 (a) and (b). For example, for a
charge q = ±e positioned between the two dots, near gate
B2, the exchange increases (decreases) with respect to the
impurity-free value, since the positive (negative) point charge
attracts (repels) the electrons in the dots toward (away from)
each other.

Fig. 3. Linecuts of the confinement potential V (r) (solid lines, left axis)
and ground-state single-particle wavefunction ψ0(r) (dashed lines, right axis).
The linecuts are taken through the center of the channel. The plunger gates
(between ±10 nm and ±25 nm) create a double-well potential. The results
for an impurity with charge q = ±e positioned at the center of B2, y = 0 nm,
at the Si/SiO2 interface are plotted in blue (green). The results in the absence
of a charge impurity are plotted in orange. When q = ±e, the potential under
B2 is suppressed (increased) relative to the impurity-free case leading to a
larger (smaller) probability of the electron occupying the region between both
dots and consequently a larger (smaller) value for J .

V. TWO-QUBIT GATE FIDELITIES

A. Dynamics under the exchange Hamiltonian

Before analyzing two-qubit gate fidelities, we start by
considering the dynamics of a two-qubit system under
the influence of the exchange interaction. We consider
the following basis for the two-qubit states: |s1s2〉 ∈
{|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}, where s1 (s2) is the spin state of the
first (second) qubit. In this basis, the exchange Hamiltonian
can be written as

HJ = JS1 · S2 =
J

4
− J

2
I +

J

2
σx, (5)

where I = |↑↓〉 〈↑↓|+ |↓↑〉 〈↓↑| and σx = |↑↓〉 〈↓↑|+ |↓↑〉 〈↑↓|.
Therefore, HJ acts trivially on the polarized triplet states |↑↑〉
and |↓↓〉. Accordingly, we neglect these and focus on the
exchange Hamiltonian projected onto the subspace spanned

by the remaining states, i.e., H̄J = −J4 I + J
2 σx. Because the

first term in H̄J does not induce any nontrivial dynamics, we
can further limit ourselves to considering only J

2 σx = ~
2 ΩJ ·σ,

where ΩJ = [J/~, 0, 0] is the angular frequency vector
associated with H̄J and σ = [σx, σy, σz] is the vector of Pauli
matrices with σz = |↑↓〉 〈↑↓|− |↓↑〉 〈↓↑| and σy = 1

2i [σz, σx].
For a pure state |ψ〉 (in a two-dimensional Hilbert space),

the density matrix can be written as % = |ψ〉 〈ψ| =
1
2 (I + M · σ), which defines an effective magnetization vector
M. The dynamics of this vector are given by the Bloch
equations Ṁ(t) = ΩJ ×M(t) [9]. Because ΩJ has vanishing
y and z components, Mx will be constant in time. For an
initial state |ψ0〉 = |↑↓〉 we find M−(t) ≡Mz(t)− iMy(t) =
eiΩJ t. If the system evolves for a time τ = π

ΩJ
, then

M−(τ) = −1, or equivalently, the final state of the system
will be |ψf 〉 = exp [−iΩJ · στ ] |↑↓〉 = |↓↑〉. The effect
of the operator SWAP ≡ exp [−iΩJ · στ ] is therefore to
“swap” the states of the qubits. However, this gate does not
generate entanglement. In contrast,

√
SWAP ≡ exp

[
−iπ2σx

]
,

which is implemented by allowing the system to evolve under
the exchange Hamiltonian for a time τ/2, does generate
entanglement. We will therefore focus on the fidelity of the√

SWAP gate below.

B. Dynamics under the influence of a single fluctuator

In the absence of all impurities, applying
√

SWAP to the
two-qubit system described above would involve initializing
the system in the state |ψ0〉, applying a sufficiently high volt-
age to gate B2 to generate a constant exchange Hamiltonian
HJ , and allowing unitary evolution of the system for a time
τ/2 = π

2ΩJ
. In the presence of charge noise in the form of

a fluctuating interface charge impurity, the exchange energy
becomes time dependent, J(t) = J0+δJχ(t), where J0±δJ is
the exchange energy in the absence (presence) of the impurity
and χ(t) is a random signal that jumps between 1 and −1
with an average switching rate γ. If the jumps of the random
signal are exponentially distributed so that the number of
fluctuations in a given time are Poisson distributed, we can use
the results of [9] to write an analytic expression for the average
dynamics of M−(t) under the influence of the fluctuator. For
M−(0) = 1, which corresponds to the initial state |ψ0〉 = |↑↓〉,

〈M−(t)〉 = eiJ0t/~−γt
[
cos(ωt) +

γ

ω
sin(ωt)

]
, (6)

where ω =
√

(δJ/~)2 − γ2.

C.
√

SWAP gate fidelities

Using (6) we can compute the average density matrix of the
two-qubit system under the influence of a single fluctuator,
%̄(t) = 1

2 (I + 〈M(t)〉 · σ). Here, 〈Mx(t)〉 = 0, 〈My(t)〉 =
− Im [〈M−(t)〉], and 〈Mz(t)〉 = Re [〈M−(t)〉]. The average√

SWAP fidelity implemented with the exchange interaction
becomes F̄ (t) =

〈
ψ0|
√

SWAP
†
%̄(t)
√

SWAP|ψ0

〉
, where |ψ0〉

is the initial state of the system. For |ψ0〉 = |↑↓〉 the average
fidelity takes the following analytic form

F̄ (t) =
1

2
+

1

2
Im
{
eiJ0t/~−γt

[
cos(ωt) +

γ

ω
sin(ωt)

]}
, (7)



Fig. 4. Exchange energy J and minimal average error on fidelity 1− F̄max (color scales), computed as a function of the position of a single charge impurity
located at the interface between the silicon channel and the oxide that separates it from the gates. The first column of subplots corresponds to q = +e, while
the second column corresponds to q = −e. The exchange energy J is shown in (a) and (b) for q = +e and q = −e respectively. The minimal average error
on fidelity 1− F̄max is computed using Eq. (7) and plotted for γ = 105 Hz in (c) and (d). The dashed white lines correspond to the outline of the gates P1,
B2, and P2. The barrier-gate bias is set to VB2 = 0.57 V. The minimal average errors [Figs. (c)-(d)] are capped at the lower bounds for the respective color
scales such that any error below the lower bound is represented by the color of the lower bound (i.e. purple).

In our simulations, we consider γ = 105 Hz. This frequency
is within the range that was probed in [10] using dynamical
decoupling in FD-SOI spin-qubit devices at a temperature sim-
ilar to that used in our simulations, T = 120 mK. Importantly,
the noise power spectral density in these devices was found
to be well described by a 1/f fit, which is a signature of
charge noise induced by two-level fluctuators. Therefore, the
experiments of [10] provide evidence that two-level fluctuators
are an important source of noise to consider in these types of
devices.

For each impurity position and charge q = ±e, we compute
the maximal average fidelity F̄max = maxt F̄ (t). The results
are displayed in Fig. 4. We find minimal errors on the fidelity
1 − F̄max that differ by orders of magnitude depending on
the sign and position of the interface charge defect. Moreover,
there are regions at the interface where the presence of charge
impurities would prevent the fidelity from achieving state-of-
the-art values, & 99% [6].

VI. CONCLUSION

Using a specialized (TCAD) simulation tool designed
specifically for quantum systems, we are able to investigate the
behavior of a model FD-SOI double-dot device at cryogenic
temperatures. Access to the many-body energies has allowed
us to make quantitative predictions about the possible values
of exchange in this device and to simulate realistic two-
qubit gates in this system under the influence of a fluctuating
interface charge defect. We can identify defect locations that
lead to errors orders of magnitude worse than others which
can help target efforts to improve next-generation devices.
Moreover, the qualitative difference between the interface map
(Fig. 4) for defects with q = +e and q = −e can be used
in conjunction with measurements to determine the sign of
fluctuating interface charge defects in these types of devices.

The gate fidelities simulated here are assumed to be limited
by charge noise which is modeled as arising from a single
point charge tunneling in and out of an interface trap. In
practice, the number of interface impurities is characterized by
a density of interface traps (DIT). A natural extension of this
work would therefore be to incorporate multiple impurities,
randomly positioned according to a realistic DIT. Nonethe-
less, the framework presented here showcases the capability
of existing simulation tools to predict key quantum device
performance metrics, such as two-qubit gate fidelities, using
only device geometries.
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