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Abstract—BioFETs enable the detection of a diverse range of
biological analytes by transducing changes in surface potential
into a measurable electrical signal. Although established
analytical models, including the Gouy–Chapman–Stern and
site-binding frameworks, effectively describe surface charge
and protonation equilibria, they do not account for the
sequence-specific chemistry, steric effects, or conformational
diversity characteristic of peptides and other biomolecules.
Here we present a hybrid model to address these limitations,
augmenting previous BioFET simulation frameworks with
molecular parameters including proton dissociation constants
and topological surface areas determined through molecular
modelling. While this work focuses on peptides, our framework
extends to modified peptides, diverse biomolecular analytes and
immobilization chemistries relevant to biosensing. We validate
our model against experimental values and molecular modelling
studies, confirming the physical fidelity of our hybrid model and
perform simulations of representative peptides demonstrating the
model’s capacity to resolve fine chemical variations, providing
a practical tool to guide experimental design and contribute
to the development of BioFETs. We further identify notable
areas for future work where we will engage with more rigorous
modelling, utilizing our model outputs to guide experimental
design and further validate our device modelling framework.

Index Terms—Biosensor, machine learning, device modelling,
analytical simulation

I. INTRODUCTION

BioFETs are increasingly employed for the detection of a
broad spectrum of biomolecular analytes spanning peptides,
proteins, nucleic acids, and other small biologically relevant
molecules, with each presenting distinct charge, size, and
structural properties at the sensing interface [1, 2]. As label-
free sensors, BioFETs transduce their signal without fluores-

cent or enzymatic tags, thereby reducing sample-preparation
complexity and time while preserving the native state of the
analyte [3]. These advantages underpin their suitability for
miniaturised, rapid diagnostic systems in clinical and point-of-
care settings and have led to substantial interest in furthering
their development [2, 3].

Modelling frameworks are an essential tool for the de-
velopment of these BioFETs, enabling predictions that are
computationally tractable yet retain sufficient physical detail
to guide device analysis, optimization, and design. Without
such approximate models, exhaustive atomistic simulations
or purely experimental approaches are impractical, resource-
intensive and too slow for timely screening of the vast chem-
ical and structural diversity inherent to biomolecules [4, 5].

The principal innovation of this work is twofold:
first, we implement a ML-driven molecular model to
predict peptide-specific proton dissociation constants (ki,
describing functional-group specific protonation equilibria)
and topological surface area (TSA, a proxy for steric
footprint of the molecule on the sensor surface) [6]; second,
we integrate these molecular parameters into a combined
GCS/site-binding surrogate model for BioFETs, as shown
in Fig 1. This approach enables the model to account for
the unique chemistry, steric properties, and conformational
properties that define the response of biomolecular analytes
at the sensor interface [2]. These features which influence
the BioFET signal, are not included in conventional models
based on static, residue-level parameters [7]. Our framework
builds on a combined site-binding and Gouy–Chapman–Stern
(GCS) framework for pH-dependent titration and diffuse layer

Fig. 1: Workflow of the hybrid analytical–ML model. Biomolecules are SMILES-encoded and passed to an ML-based molecular model (MolGpka) [6] to
predict ki and TSA values, which are then integrated into the combined site-binding and GCS analytical model to compute the transduced signal measured
by the BioFET. Image components adapted from [6] and [1].



potential [7, 8], incorporating peptide-specific ki and TSA
directly into the analytical solution. This hybrid approach
treats the biomolecular analyte as an integrated molecular
system, rather than as a collection of isolated titratable
groups, aligning the modelling framework with experimental
evidence that immobilisation chemistry, charge distribution,
and steric footprint influence BioFET signals [2, 7].

To our knowledge, this constitutes a novel union of molec-
ular and analytical modelling, resulting in a computationally
efficient, physically consistent model capable of discriminat-
ing sequence-level variation in BioFET response. The hybrid
framework generalises readily to chemically modified pep-
tides, other molecular targets, and varied surface chemistries.
We validate our model through comparison of modelled ki
values for alanine, glycine, and valine homopeptides with ex-
perimental values [9], and verification of TSA trends against
independent amino acid adsorption studies [10–12]. We then
apply our model to a representative peptide of medical interest
to highlight our hybrid model’s capabilities.

II. METHODOLOGY

BioFETs detect immobilised peptides by transducing
changes in surface charge: charged functional groups
from the immobilised peptide in the diffuse layer of the
electrolyte alter the electric potential (Ψ0), modulating the
device’s channel conductance and producing a measurable
signal [1, 2, 8]. The charge states of the peptide’s titratable
sites are determined by their ki values, while the density of
these charges is influenced by TSA. Together, these affect
the modulation of Ψ0 as a function of pH [7]. Because the
molecular parameters that define the BioFET response are
intrinsic to each biomolecule, BioFETs can detect analytes
directly without modifying the analyte from its native state -
hence their label-free designation [3]. These combined effects
of acid–base equilibria and analyte–surface interactions yield
a BioFET response characteristic of the peptide sequence or
other biomolecular analyte [1, 2].

To model the BioFET response, we implement an approx-
imate analytical framework that combines the site-binding
and GCS models, treating peptide protonation and the elec-
trical double layer in a self-consistent manner, and linking
the molecular parameters of the immobilised peptide to the
measurable Ψ0 [7]. In this framework, the charge contributed
by each titratable group is determined by its ki, while the
total surface charge depends on the number of accessible
sites, Ni, scaled according to the peptide’s TSA. This site-
binding charge acts as a boundary condition to solve the
Poisson–Boltzmann equation for the diffuse layer, allowing

electroneutrality to be maintained at the interface. Our method
iteratively solves this coupled electrostatic and chemical sys-
tem until a self-consistent solution is reached for both Ψ0 and
the surface protonation states at each point along the pH titra-
tion. As a result, the sequence-specific molecular parameters ki
and TSA are directly linked to the measurable BioFET signal,
converting the generic GCS/site-binding framework into the
molecule-specific model illustrated in Fig. 1.

III. RESULTS AND DISCUSSION

Conformational Effects and TSA Validation

The TSA parameter used in this work is a widely adopted
descriptor (sometimes referred to as TPSA depending on
the context of the literature) that estimates molecular surface
polarity by summing fragment-based contributions from polar
atoms, without requiring computationally rigorous structural
conformation predictions [13]. While true conformational ef-
fects reflect the three-dimensional arrangement of atoms in
solution or at interfaces, our use of TSA provides a tractable,
two-dimensional surrogate that encapsulates the projected
molecular footprint relevant for steric effects at the sensor
surface. The TSA parameter thus serves as a proxy for the
footprint of the immobilized peptide at the sensor interface.
In our work, peptides with larger TSA occlude more surface
sites, reducing the number of available surface sites Ni, and
therefore the concentration of titratable functional groups and
magnitude of Ψ0.

We use an experimental site density of N0 = 1×1014 cm−2,
corresponding to a per-peptide footprint of A0 = 100 Å

2
from

previous characterizations [7]. Peptides with TSA > A0 are
treated as blocking adjacent sites, reducing Ni as follows:
Ni = N0 if A ≤ A0; Ni = N0(A0/A) if A > A0, where A
is the predicted TSA. This rescaling propagates through the
self-consistent solution of the model, narrowing the range of
Ψ0 for peptides with increasingly high steric footprints which
exceed A0.

We confirm the use of TSA as a parameter describing
the steric and conformational attributes of a peptide on
a sensor surface by considering its alignment with trends
across three amino acid–graphene adsorption studies [10–12].
Notably, these studies investigate the adsorption behaviour of
amino acids and peptides directly on graphene surfaces under
aqueous conditions. This provides a relevant foundation for
assessing the impact of molecular footprint and conformational
features on sensor response. In our model, the effects of
conformation such as molecular orientation and projected
area are implicitly captured through TSA, which is then
used to compute steric site blocking at the interface. We

TABLE I: Comparison of strongest and weakest binding residues across this work and prior amino acid-graphene adsorption studies

Study Metric Strongest Weakest

This work TSA (Å2) Arg > Gln > Tyr ≈ Thr ≈ Ser ≈ Phe Gly ≈ Ala ≈ Val
Hughes & Walsh [10] ∆Gads (kJ mol−1) Arg > Gln > Tyr ≈ Gly ≈ Phe Val < Ala ≈ Thr ≈ Ser
Welch et al. [11] ∆Gbind (kcal mol−1) Arg > Tyr ≈ Gln Val < Ser ≈ Thr ≈ Gly ≈ Phe
Dragneva et al. [12] Eads (eV) Tyr > Phe ≈ Arg Ala ≈ Thr ≈ Ser ≈ Gly < Val

Note: Larger TSA values or more negative ∆G/Eads denote stronger binding. Residues shown correspond to those ranked at the strongest and weakest
binding extremes. For context, Ala is omitted in [11] as it occupies an intermediate range, and similarly, Gln is omitted in [12].



Fig. 2: Comparison of modelled ki values (solid lines) with experimental data (dashed lines) for alanine, glycine, and valine homopeptides of 1–4 residues,
based on capillary zone electrophoresis measurements [9]. Dotted grey lines represent static, tabulated ki values used previously [7]. For the alanine
homopeptides, we use the ki values here in the BioFET simulations of Fig. 3, where, for a monoprotic titration, these ki values correspond to the inflection
points (vertical lines) in the Ψ0–pH plots.

summarise their findings in Tab. I, where, in all cases, residues
exhibiting strong adsorption such as arginine, tyrosine, and
phenylalanine show high TSA values in this work, while
weakly binding residues such as valine, alanine, and glycine
align with a low TSA. This agreement across the diverse
metrics of ∆Gads[10], ∆Gbind[11], and Eads [12] provides
physical justification for using TSA as an interpretable proxy
for peptide conformation and site blocking, capturing both the
molecular footprint and the tendency of peptides to compete
for and occupy space at the BioFET interface.

Experimental Validation and Simulation of Surface Chemistry
Further validating our framework, we compare our modelled

ki values for alanine, glycine, and valine homopeptides with
experimental data obtained from capillary zone electrophore-
sis [9]. Fig. 2 presents this comparison for homopeptides of
1–4 residues, where the solid lines indicate modelled ki values,
dashed lines show experimental measurements, and the dotted
grey line denotes sequence-invariant, tabulated ki values for
isolated amino acids used in previous implementations [7].
Our modelled values show strong agreement with experiment,
with mean absolute errors of 0.15 (alanine), 0.14 (glycine),
and 0.25 (valine).

To demonstrate how our model simulates BioFET signals,
Fig.3 presents Ψ0–pH curves for alanine homopeptides of
1–4 residues, each immobilised on a pyrene-functionalised
graphene surface. The left panel shows the simulated surface
potential as a function of pH for each peptide length, while
the right panel displays the corresponding molecular model
for the pyrene–tetrapeptide conjugate, highlighting the pyrene
anchor and terminal titratable amine groups. As the number
of alanine residues increases, two key effects are observed:
first, the amplitude of the Ψ0–pH curve decreases, reflecting
enhanced steric site blocking due to increased TSA. Second,
the inflection points in each curve shift to lower pH in
line with the ki trends validated in Fig. 2. Each curve’s
colour matches the corresponding ki value from Fig. 2. For
comparison, the grey plot shows the outcome from previous
models using static, tabulated values, which do not distinguish
between homopeptides of different lengths.

Functionalisation of the graphene surface is essential for
immobilising peptides onto a BioFET [2, 7]. By explicitly
incorporating surface chemistries into our model, we move
beyond isolated molecular predictions and account for the sur-
face chemistry of a BioFET. While our model remains device-

Fig. 3: Simulated BioFET plots for alanine homopeptides (1–4 residues),
labelled as Pyrene-A, Pyrene-AA, Pyrene-AAA, and Pyrene-AAAA, each
immobilised on pyrene-functionalised graphene (left). The plots show
progressive attenuation of Ψ0 amplitude and shifts in inflection points with
increasing residue count. The grey curve, labelled Pyrene-A/AA/AAA/AAAA,
shows the result for all peptide lengths using static, tabulated ki values as
in previous models; these curves are identical and overlap because previous
models did not include sequence-specific parameters. The right panel presents
a molecular model of the pyrene–tetrapeptide conjugate, highlighting the
pyrene anchor and terminal titratable amine sites. Colour coding links each
peptide length to its corresponding ki value for the homopeptide of that
residue count from Fig. 2.

independent by predicting molecular parameters directly from
SMILES-encoded inputs, we demonstrate this workflow with
a pyrene-functionalised system, as pyrene is widely used for
graphene-based biosensing applications [14]. Importantly, our
framework can also account for further chemical modifications
to the peptide itself, such as post-translational modifications,
synthetic modifications, which influence the resulting BioFET
signal [2, 7]. By calculating the relevant ki and TSA
parameters for any valid input structure, our approach enables
the simulation of a wide variety of analytes and surface
chemistries - a notable contribution of our framework.

Sequence Discrimination and Medical Applications

We further demonstrate the sequence-level discrimination
capabilities of our model using variants of the KYD motif, a
peptide of medical interest recognised by specific antibodies
for affinity tagging and detection [15]. Fig. 4 presents simu-
lated BioFET responses for KYD, alongside AKYD, DKYD,
NYD, and DNYD - derivatives of the KYD motif - where each
curve reflects unique combinations of protonation and steric



Fig. 4: Simulated BioFET responses for five peptides based on the KYD
motif: KYD, AKYD, DKYD, NYD, and DNYD showing Ψ0 as a function
of pH . Vertical lines indicate pH values at which major charge transitions
occur, derived from ML-predicted ki values. The hybrid model captures
both sequence-specific protonation behaviour and conformational differences
between peptides (via TSA), yielding separable Ψ0 curves.

parameters related to the specific amino acid sequence. The
model yields clearly distinguishable Ψ0-pH profiles and can
additionally accommodate for analytes with numerous titrat-
able groups, highlighting its ability to resolve single-residue
changes relevant to medical and diagnostic applications.

IV. FUTURE WORK

Building on the present work, future efforts will refine
our model of the peptide–electrolyte interface by explicitly
accounting for the spatial distribution of molecular charges
and their screening by the surrounding electrolyte. This will
enhance the physical fidelity of device simulations, especially
for peptides with complex conformations or charge arrange-
ments. In parallel, we aim to systematically validate model
predictions through close collaboration with experimental part-
ners, comparing simulated responses with sensor data from
ongoing device fabrication and measurement efforts within our
consortium. Such validation will provide iterative feedback to
refine both the modelling assumptions and device protocols. In
addition, we aim to develop inverse modelling approaches to
infer properties of the biomolecular analyte from BioFET sen-
sor outputs, with this being a key contribution which will en-
courage the application of BioFETs for medical applications.

V. CONCLUSION

This work demonstrates an hybrid ML-analytical model
for simulating peptide-specific BioFET responses. By incor-
porating ML-predicted ki values and TSA-based scaling of
accessible surface sites into a GCS/site-binding framework,
we achieve increased physical fidelity and sequence-level
resolution compared to prior analytical models based on static,
tabulated molecular parameters.

Validation against experimentally measured ki values for
alanine, glycine, and valine homopeptides (Fig. 2) confirmed

strong agreement between predicted and measured values.
Similarly, TSA-based scaling of Ni reproduced trends ob-
served in three independent adsorption studies (Tab. I), sup-
porting the physical interpretability of the model’s molecular
descriptors. Ongoing work will focus on enhancing the physi-
cal fidelity of the peptide–electrolyte model, experimental val-
idation, and the development of inverse methods for extracting
analyte properties from experimental BioFET signals.

This hybrid model is not intended to replace atomistic
simulations or empirical experiments but offers a
computationally efficient, physically grounded approach
that bridges molecular-level properties and device-scale
response. By resolving biochemical variations, including
chemical modifications and specific surface chemistries,
the model provides a practical tool to contribute to the
development of BioFETs for biomolecular sensing.
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