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Abstract—A new module for automated optimization of process
TCAD model parameters is presented along with example use
cases. Features include: novel ways of measuring profile dis-
crepancy, seamless comparison of simulated 3D structures with
2D micrographs of experimental structures, and integration of
state-of-the-art open source optimizers and tools for sensitivity
analysis. Demonstrated through practical examples, the module
enables excellent matching of simulated profiles to experimental
micrographs for process calibration and provides valuable in-
sights into parameter sensitivities using global sensitivity analysis,
thereby addressing key challenges in TCAD model development.

Index Terms—Deposition, Etching, Process Simulation, Emu-
lation, Optimization, Sensitivity Analysis

I. INTRODUCTION AND MOTIVATION

Simulation models for thin-film deposition and etching pro-
cesses typically rely on a set of user-defined parameters. These
parameters can be refined through automated optimization to
reduce the discrepancy between simulated and experimen-
tally observed structures. In most cases, experimental data
is obtained from two-dimensional (2D) electron micrographs.
Because three-dimensional (3D) reconstruction is rarely per-
formed due to its high cost and complexity, model validation is
usually restricted to comparisons of 2D cross-sectional surface
profiles (SPs). The resulting differences at several critical
dimensions (CDs) are then used to define the objective for
optimization.

In a recent study [1], we highlighted several limitations of
this approach and proposed new global measures of profile
discrepancy, implemented in our in-house process simulation
framework, ViennaPS [2]. Specifically, these measures im-
prove upon traditional CD-based approaches by quantifying
the full profile mismatch, providing a more robust objective
for optimization. Building on this work, we now present a
unified module for model calibration and evaluation.

II. THE OPTIMIZATION MODULE

A. Initial Setup
The surface profiles (SPs) of experimental structures are
systematically extracted from electron micrographs and rep-
resented as polygonal chains (PCs) that precisely capture the
geometry of material interfaces. Both fully automated and
semi-automated extraction methods have been successfully
used for the extraction. Once extracted, the polygonal chains
are seamlessly imported into ViennaPS through a standardized
interface that preserves geometric accuracy and maintains

traceability to the original experimental data. This is achieved
by an internal conversion process in which the polygons are
transformed into implicit surface representations using the
well-established level-set method [3], and subsequently stored
in custom data formats. They can then serve as both the
target surface (TS), i.e. the result after applying the process
of interest, and as the starting surface, e.g. when modeling
a deposition process. In case the initial surface has a simple
geometry, e.g. when etching into a flat wafer with a regular
tapered mask, the extraction of the initial surface can be
skipped and built-in functions for geometry creation can be
used to set it up instead.

B. Optimization
Evaluating the objective function f(x) at a point x =
(x1, . . . , xnv ), involves running a simulation and quantifying
the discrepancy between the resulting profile and the target
profile, ideally by a single number to avoid the added com-
plexity associated with multi-objective optimization. In this
study, we make use of two metrics: The area difference metric
(AD), which estimates the area where the overlaid profiles do
not match, and the narrow band distance metric (NBD), which
sums the squares of the distances between the two surfaces
on grid points close to the simulated surface. Both methods
are visualized on an example structure in Figure 4, while the
details of their implementation can be found in [1].

With f defined as above, the gradient ∇f is not readily
available. Even the simplest first-order accurate estimate of
∇f , such as forward differences, requires nv + 1 evalua-
tions of f , making this approach prohibitively expensive.
Hence, we use derivative-free optimizers from dlib [4] and
Nevergrad [5], which proved to be highly effective. Specif-
ically, we employ dlib’s find_min_global, and Nev-
ergrad’s adaptive meta-optimizer NGOpt4. These algorithms
blend multiple gradient-free strategies to tackle black-box opti-
mization. The optimization workflow consists of the following
steps:

1) Select the model parameters to serve as decision vari-
ables and introduce bounds and constraints as needed.

2) Choose an optimizer and define a termination criterion,
such as a maximum number of evaluations of f or a
runtime limit.

3) Choose a distance metric for evaluating the discrepancy
between the simulated and the experimental surface.



4) Execute the optimization loop until the stopping criteria
in 2) are met:

• Run the simulation at a proposed point x.
• In case the simulation was performed in 3D, slice

the resulting structure at specified evaluation planes
using the available slicing functions.

• Evaluate the distance metric.
• Select a new point based on previous evaluations of

the objective function f .

C. Local and Global Sensitivity Analysis
Once a local minimum f∗ = f(x∗) is found, it is important to
assess the impact of individual parameters x∗i and understand
the local behavior of f around x∗. This can be done through
local sensitivity analysis (LSA) by evaluating f and estimating
∇f in the neighborhood of x∗.

However, process TCAD models typically involve a large
number of parameters. Allowing nv of these parameters to
become optimization variables, the search space volume VS
grows exponentially with nv , making optimization increas-
ingly difficult. To address this challenge, we perform global
sensitivity analysis (GSA). GSA quantifies how input variables
influence output variability across the entire search space.
This provides valuable insights into their relative importance.
By identifying low-impact variables, these can be fixed or
discretized in further investigations, effectively reducing VS .

To conduct GSA, we integrate the SALib Python library [6]
into our module. Several popular GSA metrics are available in
SALib, from which we chose the Sobol sensitivity indices [7],
as they are highly regarded and considered a benchmark in
the field [8]. These indices are variance based, and hence
defined within a probabilistic framework, where both the
inputs and the output of f are considered random variables.
We therefore adopt the probabilistic notation Y = f(X),
X = (X1, . . . , Xnv

) from now on. We also consider the Xi

to be uniformly distributed within the valid ranges which are
typically chosen during model development. This is common
practice in sensitivity analysis applications. The assignment of
input distributions is an integral part of the modeling process
and does not necessarily imply that the variables have inherent
stochastic uncertainty [8].

Given the objective function f(X) with bounds on the
variables expressed as X ∈ Ω ⊂ Rnv , the total variance of
f under the above assumptions is then given by:

V[f ] =
∫

Ω

f2(X) dX−
(∫

Ω

f(X) dX

)2

. (1)

The first-order Sobol index Si quantifies the contribution of
the variable Xi to the output variance in isolation:

Si =
VXi

[EX∼i
[f(X) | Xi]]

V[f ]
, (2)

where EX∼i
[·] denotes the expectation over all variables except

Xi, and VXi [·] denotes the variance with respect to Xi.

The second-order Sobol index Sij captures the interaction
effect between Xi and Xj , beyond their individual contribu-
tions:

Sij =
VXi,Xj

[
EX∼ij

[f(X) | Xi, Xj ]
]

V[f ]
− Si − Sj . (3)

Higher-order Sobol indices can be defined analogously, but are
rarely used in practice due to the high computational cost of
estimating them.

The total-order Sobol index STi measures the contribution
of Xi including all interactions with other variables:

STi =
EX∼i [VXi [f(X) | X∼i]]

V[f ]
. (4)

Since f(X) is not analytically tractable, the variances and
conditional expectations required for computing the indices
cannot be evaluated in closed form and instead must be ap-
proximated using numerical techniques. We employ Saltelli’s
sampling scheme [9] as available in SALib, which uses quasi-
random Sobol sequences in a specific matrix construction to
efficiently estimate Si, Sij and STi . This approach offers im-
proved convergence and reduced estimator variance compared
to conventional Monte Carlo integration. Full details of the
sampling and estimation procedure can be found in the original
reference. Lastly, it is also worth noting that the GSA workflow
is almost identical to the optimization workflow described in
Section II-B, but with the following minor changes:

• In step 2), instead of choosing the number of evaluations
of f directly, one chooses the so-called sample size, N ,
as appropriate based on nv . Depending on whether the
second-order indices Sij are to be estimated along with
the Si and STi , this then requires N = N(2nv + 2) or
N = N(nv + 2) evaluations of f , respectively.

• In step 4) the loop is executed at predefined points based
on the chosen sampling scheme, each visited point and
the value of f at that point are stored.

The resulting dataset can be used to estimate the Sobol indices.
III. EXAMPLES

A. Optimization of an SF6/O2 Etching Model
We applied the workflow described in Section II-B to a clas-
sical model of silicon etching in an SF6/O2 plasma proposed
by Belen et al [10]. The simulations were done in 3D, using
a quarter of a hole with reflective boundary conditions to
increase computational efficiency. The initial setup and the
slicing for profile comparison are shown in Figure 1. The
objective function was defined as the sum of the AD and NBD
metrics, as described in [1] and illustrated in Figures 1 and 4.

We used dlib’s find_min_global to minimize this
function, varying the following parameters: Ion flux, fluo-
rine (F) flux, oxygen (O) flux, mean ion energy, silicon
ion enhanced etching coefficient (IEEC), and passivation ion
enhanced etching coefficient. Details on the surface kinetics
model are available in the ViennaPS documentation [2].

The experimental data overlaid with optimization results are
shown in Figure 2. We see excellent matches for the target



structures. Looking at the convergence graph in Figure 3,
we see rapid convergence of the optimizer in the first 100
evaluations of f , followed by a plateau lasting hundreds of
evaluations until a further valley with a new local minimum
is found.

Fig. 1. Left: The setup for silicon (Si) hole etching of the middle hole in
Figure 2. Dark gray indicates the mask at the beginning of etching; light gray
represents the simulated hole; light blue is the cross-sectional surface profile
used for comparison. Right: 2D slice comparison using the AD metric.

B. GSA of a DRIE Emulation Model

Deep reactive-ion etching (DRIE) with SF6 and C4F8 plasmas
consists of three alternating steps: (1) isotropic etching with
SF6 plasma, (2) polymer deposition with C4F8 plasma, and
(3) directional etching with high-bias SF6 plasma to remove
the bottom polymer layer and expose the substrate for another
round of isotropic etching (1). This cyclic process preserves
vertical sidewalls and enables high-aspect-ratio (HAR) fea-
tures to be etched.

To emulate this process sequence, we set up a simplified
model in which surface segments are propagated by prescribed
velocity fields corresponding to each of the steps described
above. The model includes four key parameters:

• IED and DED - isotropic etch depth and directional etch
depth (Step 1)

• DT - polymer deposition thickness (Step 2)
• PTD - punch-through depth into the substrate (Step 3)

Figure 4 shows the target vs. emulation discrepancy using both
the NBD and AD metrics after running the simulation at an
arbitrary point x ∈ Ω. The sum of NBD and AD was used for
the objective function.

Fig. 2. Si hole etching in an SF6/O2 plasma with various fractions of O2 in
the feed gas: yO2 = 0, yO2 = 0.44, yO2 = 0.5. Adapted from [10].

GSA was then performed using Sobol indices to determine
the influence of the decision variables. N = 2048 samples
were chosen and the choice to also estimate the second-order
indices resulted in N = 20480 evaluations of f in our case
of nv = 4. The total runtime was about 13 hours on a 6-core
CPU. The results are shown in Figure 5. They indicate that
the IED exhibits the highest total sensitivity, followed by the
DED and PTD. Notably, DT has a negligible impact across
all sensitivity orders, indicating it can be safely excluded
or fixed in future optimization studies. Second-order indices
(S2) highlight strong interactions between IED–DED and
IED–PTD, suggesting joint tuning is key to capturing model
behavior. Overall, the GSA highlights dominant variables
and interactions, guiding dimensionality reduction and more
efficient parameter exploration in future DRIE modeling.

IV. DISCUSSION

We have presented the capabilities of an open-source soft-
ware module which addresses a common need in developing
process TCAD models. The package is written entirely in
Python, is available on GitHub [11] and can be installed with
the standard commands. Many features are planned to be
added in future versions, such as automated cross-validation
methods, support for comparisons of 3D surfaces, faster GSA
methods and screening methods, and pre-configured LSA
methods.
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Fig. 3. Convergence plot of the optimization run for the left hole in figure
2. All fluxes are units of 1015cm−2s−2, the mean energy is in eV, the
remaining quantities are dimensionless.

Fig. 4. Setup of III-B and illustration of the f used in both III-A and III-B:
NBD metric on the left, the AD metric on the right.

Fig. 5. Total (ST), first (S1) and second order (S2) Sobol indices of parameters
of a DRIE emulation model. Black bars show 95% confidence intervals.
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