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Abstract—Simulation of the energy distribution function (EDF)
within microelectronic devices reveals potential weak points and,
therefore, can be used to improve device reliability. Accurate
Monte Carlo transport models for the evaluation of the EDF
should incorporate a non-parabolic dispersion relation and ac-
count for electron-electron scattering. In this work, we present
an accurate method for evaluating the exit time within a cell,
which is necessary to enable sampling on cell edges.

Index Terms—Monte Carlo Transport, Electron-electron Scat-
tering, Energy Distribution, Kane Dispersion

I. INTRODUCTION

Studying the EDF in microelectronic devices is crucial
for evaluating high-stress domains. Minimizing and balancing
these stresses can significantly enhance device lifespan and
reliability. Monte Carlo transport models are well-suited for
simulating the EDF, as they accurately capture the complex
physics of carrier transport [1]. Previously, we have im-
plemented a 1D model including the Kane dispersion and
electron-electron scattering, and simulated transport in 1D
MOSFET channel-like potential profiles [2], [3]. The code has
been extended to 2D, enabling the incorporation of potentials
from TCAD simulation. Due to sampling at cell edges [4],
accurate determination of the exit time is essential. We address
this using a method tailored to the Kane dispersion framework.

II. PERPENDICULAR AND PARALLEL MOTION

First, we derive the equations of motion in a local coordinate
system (xl, yl), where xl aligns with the electric field E and
yl is perpendicular to it (Fig 1). From the definition of group
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Fig. 1. Global and local coordinate system.

velocity, vg = 1
ℏ∂ε/∂k, in the Kane dispersion, ε(1 + αε) =

γ = (ℏ2k2)/(2m), and Newton’s Second axiom, the following
equations follow,

dx

dt
=

ℏ
m

kx√
1 + a(k2x + k2⊥)

,
dkx
dt

= F =
e

ℏ
E ,

dy

dt
=

ℏ
m

ky√
1 + a(k2x + k2⊥)

,
dky
dt

= 0 ,

with the parameter a = 2αℏ2/m. Within the equations, k
and F denote the momentum and the force field acting on the
carrier, respectively. The electron charge is given by e, and the
force arises due to the electric field E. Due to the challenging
formulation of electron-electron scattering, we modelled the
silicon dispersion isotropically using an effective mass meff =
0.3m0 and a nonparabolicity factor of 0.5 eV−1.

To find the electron’s position at a given time, velocities
need to be integrated with respect to time:

x(t) = x0 +

∫ t

t0

dx

dt
dt , y(t) = y0 +

∫ t

t0

dy

dt
dt .

Within a cell, a constant electric field is assumed, which
implies kx(t) = kx(t0) + Ft and dt = dkx/F . With the
auxiliary function g(t) =

√
1 + a(kx(t)2 + k2⊥), integration

yields the following expression

x(t) = x0 +
ℏ

amF
(g(t)− g(t0))

for the motion parallel to the field and the expression

y(t) = y0 +
ℏky

mF
√
a
ln

(∣∣∣∣
g(t) +

√
a kx(t)

g(t0) +
√
a kx(t0)

∣∣∣∣
)

for the motion perpendicular to it. The position and velocity
vectors, rg = [xg, yg]

T and vg = [vx,g, vy,g]
T in the coordi-

nate system (xg, yg), which is aligned with the cell edges, are
given by rg = Rrl and vg = Rvl, where the rotation matrix
R is given as

R(φ) =

[
cosφ − sinφ
sinφ cosφ

]
φ = arctan(Ey/Ex) .

At this point, we have established a bijective mapping between
the electron’s position and time. However, the equations still
do not allow an explicit calculation of the time at a given x or y
position. To address this problem, we set up a numerical solver
using Newton’s method and Brent’s method as a fallback.
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III. NUMERICAL SOLVER

To execute the Newton and Brent methods on individual
edges X±,Y±, time-dependent expressions with zeros at the
respective edge positions are required. From

X+ : x0 + xg(t) = x+ X− : x0 + xg(t) = x−
Y+ : y0 + yg(t) = y+ Y− : y0 + yg(t) = y−

we obtain the following functions:

X+ : F (t) = x0 + xg(t)− x+

X− : F (t) = x0 + xg(t)− x−
Y+ : F (t) = y0 + yg(t)− y+

X+ : F (t) = y0 + yg(t)− y−

with corresponding derivatives:

X± : F ′(t) = vx,g Y± : F ′(t) = vy,g

Before using these expressions in a numerical root-finding
method, the full set of edges [X+,X−,Y+,Y−] is reduced
to those for which valid solutions can be expected. To this
end, we implemented an algorithm that checks which edges
lie within the span of the initial momentum vector and the
force vector (Figure 2). If two opposite edges lie within the
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Fig. 2. The numerical solving scheme converges only for the blue-coloured
edges, which lie in the span of k0 (initial momentum vector) and F (force
vector)

span, one of them can be excluded by considering the position
of the turning point

X± : xu(tux) , tux = −ℏkxg/(eEx)
Y± : yu(tuy) , tuy = −ℏkyg/(eEy) .

relative to the edge. The full set of edges thus reduces to a
maximum of two. Moreover, since each edge typically yields
two solutions — one before and one after the turning point,
i.e., t1 < tu and t2 > tu — we select the initial guess for
Newton’s method as tu±C. In the rare case where this guess
converges to the incorrect root, Brent’s method is used as a
fallback.

Finally, the total exit time is taken as the shortest valid
solution among the reduced edge set. A solution is considered
valid if it satisfies the spatial constraints

X± : y− < ye < y+ Y± : x− < xe < x+

and the momentum at the exit point is directed outward,

ke · n > 0 .

A. Python Implementation

In the following, some key aspects of a performant im-
plementation are presented. For the numerical solvers, we
used the NumPy implementations of the Newton and Brent
methods.

def rotation_matrix(Ex, Ey):
norm = np.hypot(Ex,Ey)
if norm == 0:

cos_phi = 1.0
sin_phi = 0.0

else:
cos_phi = Ex / norm
sin_phi = Ey / norm

rot = np.array([[cos_phi, -sin_phi],
[sin_phi, cos_phi]])

rot_inv =np.array([[cos_phi, sin_phi],
[-sin_phi, cos_phi]])

Listing 1: Generation of rotation matrix.

Listing 1 shows an efficient method for setting up the
rotation matrix used to transform motion from the global to
the local coordinate system. Furthermore, Listing 2 illustrates

def finding_edges(A,B,C,D,O,E_x,E_y,k_x,k_y):
#Relate points to edges

corners = [
(A, ["Y+", "X-"]),(B, ["X-", "Y-"]),
(C, ["X+", "Y-"]),(D, ["X+", "Y+"])]

result_set = set()
#Defining A for the matrix equation

a, c = -Ex, -Ey
b, d = k_x, k_y

#Check if point has positv k-F-coordinates
for point, edges in corners:

e, f = point - O
det = a*d - b*c
if det != 0:

det1 = e*d - b*f
det2 = a*f - e*c
if det1 * det > 0 and

det2 * det > 0:
#Add edge if not yet in set

result_set.update(edges)

Listing 2: Finding edges in span of k0 and F using Cramer’s
rule

a performant approach to determine whether the coordinates
rk, rF of a corner point are positive in the coordinate sys-
tem spanned by the vectors k and F. This requires solving
A[rk, rF ]

T = [xcorner, ycorner]
T . If the point lies within the span

the adjacent edges are added to the result set. If the set remains
empty after calling finding edges, no corner lies within the
span, and consequently, the single edge that intersects the span
can be evaluated directly.



IV. RESULTS

Choosing an appropriate band structure is crucial and in-
fluences the simulation results in two key ways. Therefore,
accurately estimating carrier behaviour is not trivial.

First, the scattering rates depend on the density of states
(DOS), which is directly influenced by the band curvature. A
dispersion with smaller curvature results in a higher DOS(ε),
leading to increased scattering and, consequently, faster energy
relaxation over time. As a result, energy relaxation occurs
more rapidly in the Kane model compared to the parabolic
band approximation.

Second, the kinetic properties of the carriers change. In
particular, the carrier velocity at a given energy depends on
the curvature of the band. In the Kane model, the reduced
band curvature at higher energies leads to a higher effective
mass and a decreased group velocity compared to the parabolic
case. Figure 3 should point out the conceptual importance of

Fig. 3. Comparison of trajectories in Kane (red) and parabolic (blue)
dispersion for different initial energies. The thick cross marks the position
at the exit time calculated from the parabolic model.

our implementation. It illustrates that trajectories based on
the Kane dispersion and a parabolic model with an energy-
dependent mass that remains constant during free flight,
meff = m(1 + αε(t0)), can appear similar within a single
cell. However, notable differences arise in trajectory length. In
some cases, the parabolic model predicts a significantly shorter
exit time, which would incorrectly miss the edge crossing
when applied to the Kane trajectory rKane(tedge, parabolic) —
as indicated by the red cross in Figure 3 (right).

A. Top gated NMOS

One objective of this study was to apply our model to poten-
tial profiles obtained from TCAD simulations. We modelled
a generic Si/SiO2-NMOS device using the NMOS template
provided by the GTS-TCAD tool (see Figure 4). A channel
length of 30 nm and a body thickness of 10 nm were chosen.
The gate oxide thickness was set to 1 nm to ensure strong
electrostatic control at low operating voltages. The ON and
OFF states of the transistor were represented by setting the
drain-source voltage to VDS = 1V, and applying gate-source
voltages of VGS,on = 1V and VGS,off = 0V respectively.

Figures 5 and 6 each contain three subplots illustrating the
On and Off states of the transistor. The first subplot shows
the electrostatic potential obtained from the TCAD tool, the
second displays the electron concentration from TCAD, and
the third presents the carrier concentration from our Monte
Carlo model.

Fig. 4. Transistor structure and Doping: Donor concentration at contacts
1 × 1020 cm−3 (Red), Acceptor concentration in channel 1 × 1018 cm−3

(Blue)
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Fig. 5. On state: In Kane dispersion with EES

To enable a qualitative comparison between the electron
distributions from TCAD and our Monte Carlo approach,
both distributions are normalized. We observe good agreement
between the two methods in both the On and Off states. In
the On state, a conducting channel is clearly formed, which
disappears in the Off state.

We also visualized the current flow. To achieve this, the
momentum arrays in the x- and y-directions were interpolated
onto a coarser grid. From these, we computed the angle at each
grid point to define the direction of the arrows. The arrows
were then scaled relative to the cell size. Specifically, the
arrow length was calculated using l = log(1+D

√
M2
x +M2

y )

where D, Mx and My represent the momentum density
and the momentum components in the x- and y-directions,
respectively. Finally, the lengths were normalized by dividing
each by lmax, the maximum arrow length in the array.

In the On state, the current within the channel exhibits
laminar behaviour, while in the contact regions, it appears
significantly more chaotic.

Comparing Figures 8 and 7 highlights the overestimation
of the average carrier energy when using the parabolic band
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Fig. 6. Off state: In Kane dispersion with EES
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Fig. 7. Kinetic energy in on-state: In parabolic dispersion with EES
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Fig. 8. Kinetic energy in on-state: In Kane dispersion with EES

model. Therefore, the parabolic approximation is not suitable
for accurately modelling hot-carrier degradation.

Figure 9 illustrates the carrier energy along the channel.
Here, the much stronger relaxation in the Kane model is even
more clearly visible.
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Fig. 9. Kinetic energy in channel (y = 0nm)
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