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Abstract—We present a machine learning accelerated 

Atoms-to-Devices multi-scale simulation workflow for coupling 

device simulations at the atomistic and continuum levels, applied 

to design of devices for the THz regime. This workflow is 

applicable to different material systems and can easily allow for 

computational speedups of >20,000x for high-accuracy atomistic 

simulations, achieving rapid simulation times and workflow 

integration suitable for design and optimization. When 

predicting performance on an example Si-doped graphene 

transistor (Si-GFET) the workflow suggests that these devices 

could operate well into the THz range in RF applications. 
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I. INTRODUCTION 

In this contribution we demonstrate a modelling approach 
enabling the virtual characterization of new material systems 
and devices for operation in the THz regime, with rapid 
simulation times and workflow integration suitable for design 
and optimization.  See figure 1 for a graphical representation 
of the workflow. At the core of the project are the development 
and demonstration of machine learning (ML) techniques to 
significantly reduce the runtime of the atomic-scale 
modelling, and a methodology to extract from atomic-scale 
modelling the data and model parameters needed for 
Technology Computer-Aided Design (TCAD) simulations. 
The workflow presented is applicable to other material 
systems, including novel materials, and speedups achieved 
through these techniques can benefit commercial applications 
such as communications, and many others. 

II. MACHINE-LEARNED FORCE FIELD 

To leverage machine learning for atomistic simulation of 
graphene FET devices, we use the Moment Tensor Potential 
(MTP) formulation for ML-based force fields (ML-FF) [1], 
implemented in the Synopsys QuantumATK® software 
package [2]. This allows training against the more accurate, 
but also much more time-consuming, first-principles method 
of Density Functional Theory (DFT). In short, the MTP 

formalism allows for a direct mapping between the atomic 
structure and the potential energy surface of a system, 
allowing fast calculation of energies, forces and stress (EFS) 
as shown in figure 2.  

The DFT model parameters must be chosen to provide 
accurate structural information, providing a good reference for 
the MTP fitting, as well as being fast enough to make the 
NEGF (Non-Equilibrium Green’s Function) IV calculations 
feasible. We chose DFT-LCAO (Linear Combination of 
Atomic Orbitals) with FHI (Fritz-Haber Institute) 
pseudopotentials and a DZP (Double-Zeta-Polarized) basis 
set, and the LDA (Local Density Approximation) exchange-
correlation functional, which has been shown to work well for 
graphene on hexagonal boron-nitride (hBN) [3].  

Using proprietary QuantumATK protocols to 
automatically expand input structures into training data sets, 
user-defined parameters are leveraged to target the MTP 
training data for the intended application. Anticipating that a 
bandgap in graphene would lead to better device designs 
relative to gapless pristine graphene, the training set included 
structures with silicon substitutions as such structures are 
theoretically predicted to open an energy gap in particular 
cases [4, 5]. Allowing inclusion of explicit substrate material 
in the later simulations requires incorporation of a substrate 
material at this earlier stage. We therefore include an hBN 
substrate beneath the Silicon-doped graphene layer during the 
training procedure. 

The training set consists of 18 sub-groups of structures 
covering different sizes of supercells with different 
orientations between the two layers, different concentrations 
of silicon atoms, and different types of silicon defects. During 
the MTP training, several parameters, such as the cutoff radius 
and basis set size, were optimized to improve the agreement 
with the energy landscape’s EFS values from DFT, to get the 
best possible MTP from the given training set.  

*These authors contributed equally to this publication. 

 

Figure 1: GFET Atoms-to-Devices multi-scale simulation flow 

 

Figure 2: Illustration of MTP methodology which develops a machine-

learned force field from a representation of the EFS for different 
structures 
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Overall we see over 97% accuracy in representing the 
selected physical observables relative to reference DFT 
calculations and computational speedups exceeding 20,000x 
for systems larger than 600 atoms, as shown in figure 3, thus 
demonstrating the potential for usage in multi-scale simulation 
flows where computational efficiency is required for design 
and optimization of device structures. In figure 4, we show 
how the phonon bandstructure of hBN-supported graphene is 
well reproduced by the MTP, which is crucial for using it to 
include electron-phonon coupling effects in the NEGF 
transport simulations.  

III. ATOMISTIC TRANSPORT CALCULATIONS WITH NEGF 

Using the MTP force field, we can include electron-
phonon coupling effects in the atomistic transport simulation 
via the Special Thermal Displacement method, which would 
otherwise be prohibitively expensive, without the acceleration 
provided by the machine-learned force field. This allows us to 
calculate  IV curves at finite temperatures with first-principles 
methods, providing a more realistic input for TCAD-level 
simulations for novel materials than what was previously 
achievable without this methodology. 

The Special Thermal Displacement method creates a 
single atomic configuration with atomic displacements 
approximating a weighted superposition of the relevant 
phonon modes at a given temperature. For large systems with 
degenerate phonon modes, such as the device designs in this 
study, it is a good approximation and provides a very efficient 

way of including electron-phonon coupling in the atomistic 
transport calculations.  

Using the same DFT model as described in the previous 
section on MTP training, we calculated IV curves of a silicon-
doped graphene field-effect transistor (Si-GFET) for varying 
combinations of VGS and VDS. During the execution of the 
project, it became apparent that including an explicit atomic 
description of the hBN substrate did not differ significantly 
from describing it as a continuum dielectric, and we therefore 
prioritized increasing the size of the silicon-doped graphene 
over inclusion of explicit hBN for the NEGF simulations. 

IV. NEGF TO TCAD 

To demonstrate the multi-scale simulation flow depicted 
in figure 1, we link NEGF quantum transport simulations of 
the Si-GFET with subsequent TCAD-level simulations of 
static and small-signal RF behavior to explore their potential 
in high-speed THz RF applications.  

The same dimensions, doping and Si content were used in 

TCAD simulations carried out with SentaurusTM Device from 

Synopsys [7]. The only exception is that Sentaurus Device 

requires a finite effective thickness, 𝑡ch , for the graphene 

monolayer. We also simply incorporate the 2.5 Å  vacuum 

layers sandwiching the graphene monolayer to top and bottom 

hBN insulator thicknesses for simplicity and slightly reduce 

their dielectric constant for an equivalent insulator thickness. 

As the structure is symmetric in Sentaurus Device, we only 

simulate its upper half as shown in figure 5. 

The choice of a good 𝑡ch value that leads to approximate 

simulations of 2-D materials requires all solution variables to 

be as constant along the depth direction as possible so that 

they can be converted to 2-D solutions by simply multiplying 

them by 𝑡ch. A simple approach to enforce constant potential 

along the depth of the channel is to artificially increase the 

off-plane component of the graphene dielectric constant, 

𝜀Gr,⊥, so that 𝑡ch ≪ 𝐿𝐷, the Debye length. As the inversion 

layer in the channel tends to grow larger than the electron 

density in the source/drain regions, we impose the stricter 

condition for the channel region under heavy inversion, 

which can be shown to obey: 

 𝜀Gr,⊥ ≫
(𝑉GS,max−𝑉T)

𝑢T
𝜀hBN (1) 

where  𝑢T  is the thermal potential, 𝜀hBN  the hBN low 

frequency dielectric constant, 𝑉GS,max  the maximum gate 

voltage, and 𝑉T the threshold voltage. 

 

Figure 3: Example computational speedup of MTP relative to DFT for a 

geometry optimization. Depending on the physical observable of 
interest, even larger speedups can be achieved. 

 

 

Figure 4: Illustration of a typical phonon bandstructure from an MTP 
(blue) and from the reference DFT calculator (green). Values were 

converted from energy units (eV) to frequency units (cm-1) for 

comparison to literature by using a conversion factor of ℎ ⋅ 𝑐 which is 

approximately 0.124 meV/cm-1. Good agreement is observed relative to 
the data of reference [6]. 

 

 

Figure 5: 3-D simulation structure with ¼ of the structure – half width and 

half height – and (b) transversal cross-section showing the top half of the 
graphene channel in the simulation domain. 
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A. TCAD Model Calibration 

To perform model calibration, we first extract 𝜀hBN ≅
2.0 from QuantumATK, correct it to 𝜀hBN ≅ 1.9 to account 

for the 2.5 Å vacuum layer, and, assuming (𝑉GS,max − 𝑉T) <

1 V, we compute a minimum value for 𝜀Gr,⊥,min ≃ 65 at room 

temperature. Simulations of static and RF characteristics are 

not sensitive to the exact value of 𝜀Gr,⊥ if it is large enough 

and, as we want  𝑡ch ≪ 𝐿D,ch, we arbitrarily set 𝜀Gr,⊥ = 300.  

We then need a good choice for an effective in-plane 

dielectric constant, 𝜀Gr,∥ to mimic the 2-D material 

electrostatics. Using the Poisson equation, it is possible to 

show that: 

 𝑡ch 𝜀Gr,∥ ≅ 18 ×
𝑁D,2D

|(
𝜕2𝜑

𝜕𝑥2 )|
   nm  (2) 

where 𝜑  is the macroscopic electrostatic potential in 

source/drain depletion regions. We define the value for 𝜀Gr,∥ 

from a best second-order polynomial curvature fit to that of 

the Hartree Difference Potential (HDP) from NEGF, 

(𝜕2𝜑 𝜕𝑥2)⁄ ≅ 1.2 × 1012 V cm2⁄ , shown in figure 6 and 

focused on the source-side depletion region. Therefore, the 

coefficient of the second order term corresponds to half of the 

curvature (𝜕2𝜑 𝜕𝑥2)⁄ . With 𝑁D,2D = 1 × 1013 cm−2  by 

design, the product is 𝑡ch 𝜀Gr,∥ ≅ 150 nm.   Simulation of IV 

results remain unchanged as long as the 𝑡ch 𝜀Gr,∥ product is 

constant. Therefore, we arbitrarily select 𝑡ch = 1 nm  and 

𝜀Gr,∥ = 150. 

The doping areal density in NEGF is translated to the 

volume density required in Sentaurus Device using 𝑁D,3D =

𝑁D,2D 𝑡ch⁄ = 1.0 × 1020  cm−3 for our choice of 𝑡ch. 

We continued the calibration process by adjusting an 

analytical 3-D Density-Of-States (DOS) model with non-

parabolicity in TCAD that allowed for a good match to the 

DOS extracted from QuantumATK shown in figure 7.  More 

specifically, we calibrate the effective mass, 𝑚∗ = 0.58, and 

the non-parabolicity coefficient, 𝛼 = 0.25, of one single -

valley in the Multi-Valley DOS model in Sentaurus Device. 

As electron and hole DOS are approximately symmetric for 

graphene, we use the same extracted parameters for electron 

and hole DOS for simplicity and because holes play only a 

minor role in transport of this GFET. The QuantumATK DOS 

computation also gives us 𝐸g ≅ 0.55 eV. 

B. IV Curves 

We ran NEGF and S-Device simulations of IdVd and 

IdVg curves for multiple VDS values with corresponding 

results being shown in figure 8. Good match to NEGF is 

obtained with parameters shown in table 1 that includes a 

trivially adjusted constant mobility, where “constant” in this 

context means that it does not depend on any physical 

quantities such as the temperature or doping but still depends 

on the longitudinal electric field. A value, 𝜇𝑛 = 70 cm2 V s⁄ , 
produces a reasonable match in the entire range of VGS and 

VDS values probed. The large sub-threshold slope for all 

curves, 𝑆𝑆 ≅ 230 mV/dec , is entirely explained by 2-D 

electrostatics and the 𝑡ch 𝜀Gr,∥ product, and does not require 

interface states or any other complex explanations. Also, the 

leakage current predicted by NEGF at large negative VGS 

values can be matched by including one of the band-to-band 

models in simulations. 

Comparison of results from NEGF and TCAD 

simulations allows us to estimate 𝑣Sat within the range 107 to 

1.0 × 108 cm/s. Extraction of a more-precise value could be 

improved with expanded IDS-VDS data. On the other hand, our 

lower drain bias data fits well an experimental density-

dependent 𝑣Sat model proposed in [8] and we, therefore, used 

an identical model available in Sentaurus Device with 

parameters that fit the experimental dependence.  

Table 1 summarizes model parameters employed in 

simulations of IV curves and RF analyses, with some of their 

final values fine-tuned to best match IV’s from NEGF. 

C. TCAD Setup for High-Frequency Simulations 

Calibrated 3-D Sentaurus Device simulations for the 
structure depicted in Figure 5 are subsequently employed in 
the optimization of structural parameters of a Si-GFET with a 
T-gate. As parasitics, especially the distributed gate resistance, 
strongly affect fMax, we use full 3-D simulations in the 
optimization task.  Although the initial calibration work did 

 
Figure 6: Hartree Differential Potential (HDP) zoomed in to 

depletion region on the source side with best curvature fit  

 

Figure 7: DOS vs. energy from QuantumATK and Sentaurus Device 
for 8.3% Si enriched graphene 

 

Figure 8: IdVd and IdVg curves for the device with  
xSi ≅ 8.3%. NEGF: Symbols; TCAD: lines 
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not include mobility doping dependence as that is not captured 
in NEGF, a realistic exploration of design space should 
include at least approximate source/drain series resistances, 
and that requires mobility doping dependence. Therefore, we 
employed a Si-like dependence in our simulations as there 
seems to be no experimental data for graphene available yet. 
Table 2 lists the structural parameters used in the optimization 
process. The parameters TV and TM influence input 
capacitance and gate resistance the most, if WG  and LG  are 
held fixed. In this work, we also fix other parameters in Table 
2. The magnitude of drain bias, 𝑉DS = 1.0 V , was chosen 
based on similar values used in modern Si-based devices such 
as FinFETs or nanosheets that employ similar gate lengths as 
in the Si-GFET of this work. 

The workflow for a Si-GFET model that accounts for 
multiple design parameters allowed us to explore the design 
space and suggests that it is possible to produce graphene-
based FETs that could operate well into the THz frequency 
range as shown in figure 9 that plots fT and fMax vs. VGS bias. 
For instance, the optimum values, TV = 126 nm, and TM =
187 nm  produce a device that exhibits fMax ≅ 2 THz 
according to Sentaurus Device simulations. 

We realize that drain biases might be excessive for GFETs. 
Indeed, some leakage is present in simulated Si-GFETs due to 
band-to-band tunneling through the theoretical narrow 
bandgap opened by the introduction of Si in graphene. 

Nonetheless, that leakage would not play a significant role, 
e.g., if the Si-GFET was part of a class A RF power amplifier. 
Exploring the (VGS, VDS) bias space is a natural extension of 
this work. 

V. CONCLUSION 

We present a machine learning accelerated Atoms-to-
Devices multi-scale simulation workflow for coupling device 
simulations at the atomistic and continuum levels.  This 
workflow allows significant computational speedups while 
still preserving the accuracy of DFT simulations. As an 
example, we apply the workflow to a hypothetical Si-GFET 
and conclude that these devices could operate in RF THz range 
applications. Such techniques are not limited to RF 
applications or graphene and can be beneficial for 
investigating novel material systems for other applications. 
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Table 1: Model parameters to match IVs from NEGF 

 

 
 

Table 2: Structural parameter values for the optimization of RF 

performance figures of merit via 3D TCAD device simulations. 

Parameters TV and TM that characterize the gate metal geometry vary 

according to the intervals in the last two columns 

 
 

 

 

Figure 9:  fT (a) and fMax (b) as a function of VGS bias corresponding to different 

designs for the optimization of parameters listed in table 2. 


