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Abstract—Modern semiconductor simulation is still mostly
based on the drift-diffusion model which is solved numerically
using the finite volume method together with the Scharfetter-
Gummel stabilization. Unfortunately, the Scharfetter-Gummel
stabilization is only applicable if the charge carriers follow
Maxwell-Boltzmann statistics. In this paper, we present a stabi-
lization scheme generalizing the Scharfetter-Gummel scheme to
arbitrary carrier statistics using no additional approximations.
So far, no such scheme exists which is accurate and robust
enough for a full-scale device simulation. In our method we
solve an integral equation for the edge current using Tanh-Sinh-
quadrature. This approach works for general carrier statistics, is
easily implemented and can be effectively parallelized. Practical
use of this method is demonstrated with 2D transient and small-
signal simulation results for an exemplary MOSFET at 4K using
Fermi-Dirac statistics. Parallelizing over 64 CPU cores, the edge
current calculation takes up less than 6% of the total runtime.

Index Terms—Drift-diffusion model, generalized Scharfetter-
Gummel, Fermi-Dirac statistics, cryogenic electronics

I. INTRODUCTION

The numerical robustness of the drift-diffusion (DD) model
relies on the finite volume method in conjunction with the
Scharfetter-Gummel stabilization scheme [1] which provides
an analytical solution for the current density along an edge.
Unfortunately, this expression is only valid for Maxwell-
Boltzmann statistics. For degenerate semiconductors, where
Fermi-Dirac statistics has to be used, no similar simple and re-
liable stabilization scheme exists. This is, for example, the case
for cryogenic temperatures or high doping concentrations [2].
In order to obtain a stable simulation for these cases as well,
a generalized Scharfetter-Gummel scheme is necessary.

In the derivation of the generalized scheme an implicit
integral equation for the current density along an edge arises.
In contrast to Maxwell-Boltzmann statistics, for Fermi-Dirac
statistics it can not be solved analytically. Instead, the current
has to be calculated by approximation or numerical means.
The approximation-based schemes [2] usually preserve ther-
modynamic consistency (i.e. the edge current is exactly zero
in thermodynamic equilibrium) but they suffer from reduced
accuracy far from equilibrium and require very fine grids.
A numerical scheme based on quadrature rules has been
proposed in [2, 3]. While the approach is very promising, the
specific implementation suggested delivers inaccurate results
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in a number of cases, in particular when using non-adaptive
quadrature rules.

In this paper we build on the work in [2, 3] and improve
the approach to be more numerically robust and to work
for arbitrary (that is, continuous and strictly monotonically
increasing) carrier statistics, using no further assumptions than
the Scharfetter-Gummel scheme while preserving its excellent
stability properties. Our approach is based on Taylor series
expansions around critical points and Tanh-Sinh quadrature
for the remaining cases.

II. PROBLEM DESCRIPTION

In the DD model with arbitrary carrier statistics the electron
density n is given by
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where ¢ is the electrostatic potential, ®,, is the electron
quasi-Fermi-potential, 7,, is the chemical potential, e is the
elementary charge, kp is the Boltzmann constant and 7' is the
temperature. The effective density of states in the conduction
band N¢ and the conduction band edge Ec are material-
dependent parameters. The function F depends on the band
structure and carrier statistics: for parabolic bands and Fermi-
Dirac statistics F(7) = Fu,(n), the Fermi-Dirac integral
of order 2, which simplifies to F () = exp(n) with the
Maxwell-Boltzmann approximation.
The electron current density J,, is given as

Jn = —QRMnV(Dn (2)

with the electron mobility p,,. This equation is usually dis-
cretized with the Scharfetter-Gummel stabilization. It provides
an explicit expression for the edge current density under the
assumption that the current density, electric field and mobility
are constant along the edge and using Maxwell-Boltzmann
statistics (F(n) = exp(n)). In contrast, for general F these
assumptions yield an implicit integral equation [3]. For an edge
between vertices L and R it reads
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Fig. 1. Relative error in j for Gauss-Legendre (GL) and Tanh-Sinh (TS)
quadrature depending on number of sample points /N for two parameter sets.

where Ay = #8-£L is the normalized potential drop, in
which Vp is the thermal voltage, and j = eu{fﬁ
the normalized edge current density. This equation relates the
unknown edge current density .J,, to the three input parameters
YR — ¢L, N and nr where the latter two can be calculated
from the electron densities at vertices L and R.

Two factors make the reliable solution of this implicit
equation difficult. First, we need to obtain a solution for
every possible combination of the three input variables. In
some scenarios, like cryogenic temperatures, these inputs may
easily take extreme values of n < —600 where, using double
precision, arithmetic underflow occurs for typical functions F.

Second, if ] > 0, the integrand has a singularity at 1y =

F Y Aso)' Even though in [4] it was shown that this pole can
not be located inside the integration bounds, it can nevertheless
move arbitrarily close. This prevents the straightforward use
of Gaussian quadrature which becomes inaccurate for near-
singular integrands. This is the case for the implementation
from [2, 3] where non-adaptive quadrature rules were used
without proper handling of the singularity. In consequence, the
robustness of the scheme is deteriorated, making it infeasible
for a full-scale device simulation.

III. NUMERICAL SOLUTION

First, we note that j(Ag, nL,nr) = —j(—Ap, nr, 71), thus
we can limit the discussion to Ay > 0.

A. Taylor series expansions

Three cases can be identified in which Eq. (3) has an ana-
lytical solution: Ap =0, An =ng —nL = 0 and Ap = An.
Around these as well as the combination with Ap = Anp =0
Taylor series expansions are used to calculate the edge current.
This is necessary to ensure numerical stability (for Anp — 0
the integral gets infinitesimally small) and thermodynamic
consistency (for Ay = Ap, the equilibrium case, j has to
be exactly zero) [5]. Additionally, the runtime is shortened as
the solution with a Taylor series is obtained non-iteratively.

B. Tanh-Sinh quadrature

For all remaining cases Tanh-Sinh (TS) quadrature [6, 7] is
used, utilizing the transformation

nL + MR

() = T

which ensures that the integral boundaries are mapped onto

400 such that the quadrature is insensitive to the possible

singularities near the endpoints. Afterwards, the trapezoidal

rule with an adaptive number of sample points is optimal [7]
to approximate the transformed integral.

Applying this technique to the integral in Eq. (3) results in

+ % tanh(sinh(u)) 4)

cosh(nh) F(n(u =nh))

hA77 i

n=—oo

cosh?(sinh(nh)) F(n(u = nh))Ap — j

where 7(u) is inserted from Eq. (4), and h is the stepsize for
the trapezoidal rule, which is halved every refinement step,
starting at h = 1. The sum is truncated when the terms become
smaller than some suitable tolerance.

This equation is solved for j using Newton’s method as
in [3]. The Newton iteration is combined with the bisection
method to ensure that it always converges to the correct
solution. To that end, we keep track of an upper and lower
bound between which the correct solution j must be located. If
the Newton update would lead to a value outside that interval,
we disregard it and use the interval midpoint instead. Due to
the monotonicity of F(n) we always know that

Fm™™)|Ap — An| < [j] < F(™™)|Ap — Ayl (6)

min max

with ™" = min(ng,, ng) and n™** = max(ny,, nr ). Depend-
ing on the configuration of Ay and An we can further reduce
the range to speed up the iteration.

i) An <O0:
7> ApF(n). (7
i) 0 < An < Ap:
J<ApF(nL)- ®)
iii) Anp > Ae:
. Ap(Ap — A
is p(Ap — An) ©)
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The integral is once again calculated using Tanh-Sinh quadra-
ture.

IV. RESULTS

In Fig. 1 the error in j for F(n) = exp(n) is compared
between Gauss-Legendre (GL) [3] and TS quadrature for two
parameter sets. The error is calculated in comparison with the
analytical Scharfetter-Gummel solution. In the first case we
choose Ap = 3, g, = —10 and ng = —5 (no singularity)
and in the second case Ap = —7, n, = —7 and g = —5
(no = —4.9992). GL quadrature works well in the first case
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Fig. 2. Drain and bulk current and electrostatic potential at the middle of the
channel surface of a pMOSFET for a transient gate voltage sweep from 0V
to —3V taking 100pus at 4K and Vpg = —1V.

but converges very slowly in the second case due to the
singularity. If too few points are used no solution is found
at all. In contrast, TS quadrature converges comparably in
both cases. Note that the values chosen for the second case
could easily occur in any actual device simulation, at 300 K
they correspond to the densities n; = 3 x 106 cm~3 and
ng =2 x 10’7 cm™3 at a potential drop of —7V7. Especially
at low temperatures with smaller Vr the potential drop over
an edge could easily be much larger making the convergence
rate of GL quadrature even worse.

As an application, the stabilization is used in different 2D
device simulations at cryogenic temperatures. Here, Fermi-
Dirac statistics has to be used. Together with parabolic bands
this yields F(n) = Fu,(n) which is calculated using the
implementation from [8]. The considered device is an exem-
plary pMOSFET with 500 nm channel length and 10 nm oxide
thickness. The donor concentration is 5 x 107 cm ™ except
close to the bulk contact where it is increased to 1 x102% cm 3.
The acceptor concentration in the source and drain area is
1 x 10?29 cm™3 which is high enough that these regions are
fully ionized even at 4 K. The flatband voltage of the device
is at about Vgg = —0.18V and is approximately constant
from 4K to 77 K. For the terminal current calculation we use
a device width of 1cm.

To model the impurity freezeout occuring at cryogenic
temperatures we use simple rate equations for the dopants
similar to SRH recombination [9]. For electrons this reads
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Fig. 3. IV-characteristic of a pMOSFET at 11.5K for a dopant lifetime of
1ps [9]. The right part of the curve belongs to the first part of the voltage
ramp when the gate voltage is lowered from 0V to —4 'V, the left curve to the
second part when the gate voltage is ramped back up to 0 V. The dashed line
corresponds to the stationary state. The inset shows the subthreshold swing
where the upper curve belongs to the first part, the lower curve to the second
part and the dashed line to the stationary state.

where Np and Ng are the total and ionized donor concentra-
tion, respectively. Gpc and Rcp are the electron generation
and recombination rates, respectively, between donor level
and conduction band. The activation energy Ep is modeled
according to Pearson and Bardeen [10, 11]. gp = 2 is the
degeneracy factor for the donor states. The rates for the
acceptor states are analogous with ga = 4. 7p and 74 are
the average lifetimes of the ionized donator and acceptor
states, respectively, which we assume to be 1 ps throughout
this paper [9].

The first application is a time-dependent simulation of a
gate voltage ramp at 4 K from OV to —3V taking 100 ps.
The transient simulation is performed using the TR-BDF2
method with adaptive time steps [12]. Stationary conditions
are assumed at the beginning of the voltage ramp. In Fig. 2
the corresponding drain and bulk currents are shown for a
fixed Vps = —1V. Different transient effects are visible in
the resulting terminal currents. Around the flatband voltage
the bulk current rises due to the accumulated electrons leaving
the device through the bulk contact. While the hole channel
is formed the potential overshoots causing sign changes in
the bulk current. Meanwhile, the drain current rises with a
very steep subthreshold slope. Running the simulation on a
computer with 64 cores the calculation of the edge current
densities can be easily parallelized and amounts to less than
6 % of the total runtime.

In a second simulation we qualitatively investigate a thresh-
old voltage shift due to transient ionization. We consider a
gate voltage ramp at 11.5K from 0V to —4V back to 0V,
both parts taking 3 min, a typical duration for a bias sweep
in experiments. The drain voltage is set to Vpg = 1mV and
stationary conditions are again assumed at the beginning. The
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Fig. 4. Gate capacitance of the pMOSFET at f = 1Hz and Vpg =0V for
T € {15K, 20K, 30K}.

corresponding I-V characteristic shown in Fig. 3 includes the
transient as well as the stationary solution. At the start of the
simulation the channel dopants are frozen out completely. Due
to the applied gate voltage they get ionized over time, leading
to a transient shift of the threshold voltage. From the inset it
can be seen that the subthreshold slope is influenced as well.
This qualitative investigation shows that slow transient effects
due to incomplete ionization can influence the device behavior
at cryogenic temperatures.

To demonstrate small-signal results, we consider the gate
capacitance of the exemplary pMOSFET which is extracted
from its admittance parameters. The voltage dependence of
the gate capacitance at low frequency (f = 1Hz) is shown
in Fig. 4 for three different temperatures. The sudden drop of
the gate capacitance is an indicator of the impurity freezeout
occuring at cryogenic temperatures and has been reported
before to a lesser degree at 77 K [13]. The results indicate that
a gate bias around the flatband voltage is optimal to investigate
the impact of transient ionization as it results in the largest
change of capacitance with temperature and frequency.

V. CONCLUSION

We presented a generalization of the Scharfetter-Gummel
stabilization to arbitrary carrier statistics which works for
coarse grids and without additional assumptions. Using this
method we obtained a robust 2D solver for temperatures
down to 4K including Fermi-Dirac statistics which works
for stationary, small-signal and time-dependent simulations.
This demonstrates that the scheme is robust enough even for
extreme situations. Even though we limited the discussion to
parabolic band structure in this paper, the approach can easily
be generalized to an arbitrary density of states.
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