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Abstract—Over the past decade, the development of commer-
cial technology computer-aided design (TCAD) software has fol-
lowed an evolutionary rather than revolutionary path. Alongside
established continuum and particle-based approaches in both
process and device simulation, advanced carrier transport models
— such as deterministic bulk and subband Boltzmann transport
equation (BTE) solvers and non-equilibrium Green’s functions
(NEGF) - have been incorporated into the TCAD toolkit for
single-device simulation. At the system level, the field of design-
technology co-optimization (DTCO) has expanded to encompass
variability, reliability, and the extension of TCAD methodologies
from devices to circuits. However, most of these innovations were
introduced over a decade ago, prompting the question: What
remains to be developed in TCAD? We address this question by
analyzing current limitations and potential future directions in
TCAD development across three key dimensions: (1) fidelity, (2)
integration, and (3) efficiency — each with particular relevance
in commercial and industrial contexts. We examine ongoing
challenges in classical TCAD, advanced transport modeling, and
DTCO flows, and point to potential directions for future develop-
ments. Among these, we include various methodologies related to
machine learning and hardware accelerators, particularly within
the efficiency dimension.

I. INTRODUCTION

Technology computer-aided design (TCAD) is partially re-
sponsible for the semiconductor revolution of the past decades.
As process technology evolves to become more and more
expensive, TCAD gains in importance, allowing limited pro-
cess and device engineering to be performed outside the fab
by means of process and device simulation. In this paper
we will specifically look at three areas of major interest
to the TCAD community in the recent years, which also
have major implications in the industrial use of TCAD: (i)
advanced carrier transport modeling, (ii) design-technology
co-optimization, (iii) accelerators in TCAD.

We make a distinction between TCAD and computational
material science (CMS); thus, we do not consider ab-initio
methods such as density functional theory (DFT) or molecular
dynamics (MD) as part of TCAD, although these play an
important supporting role in modeling and simulation with
TCAD. Material science provides the necessary material pa-
rameters that make meaningful TCAD simulations possible.
These parameters are either sourced directly from experiments
or by fitting simulations to experimental data, or they are
obtained by the aforementioned CMS methods.

In both process and device simulation, the methodologies
employed in TCAD can be broadly categorized in continuum
models (usually Poisson combined with drift-diffusion) and
particle-based models (Monte Carlo for electrons, ions, and
atoms for device, ion implantation, and deposition simulations,
respectively), and these two have been the work-horses of
TCAD since its beginnings. The development of advanced
transport models has introduced methods that do not fit these

categories, most notably direct solutions of partial integro-
differential equations (PIDE) for Boltzmann transport and non-
equilibrium Green’s functions for quantum transport, requiring
novel algorithms to solve the associated problems.

Based on this observation, we introduce a classification of
problems that will help understand what is needed to advance
the state of the art in a particular topic:

Algorithm-limited problems are currently computationally
intractable or impractically expensive and a break-through
could be achieved either by finding a faster alternative algo-
rithm, or by employing parallelization or accelerators to brute-
force a solution. Also, an algorithm-limited problem might
effectively be solved by finding an alternative formulation
with minimal accuracy loss but allowing solution by a simpler
algorithm. Typical examples of algorithm-limited problems are
found in advanced transport simulations in silicon devices,
where a certain well-observed phenomenon requires a detailed
microscopic (possibly quantum-mechanical) and thus compu-
tationally expensive model.

Data-limited problems could potentially be solved by the
currently available methods but material and model parameters
are either not known or have only been characterized with a
high degree of uncertainty. Typical examples of data-limited
problems are device simulations of new channel materials,
such as transition-metal dichalcogenide (TMD) mono-layers.
While algorithm-limited problems can be solved by advancing
the state of the art in theory alone, data-limited problems
cannot; solving them requires collaboration between TCAD
and material science, of which at least a part must be based
in experimental work.

II. ADVANCED TRANSPORT
A. Silicon

Historically, the first venture into advanced transport mod-
eling in silicon devices was through bulk and device Monte
Carlo (MC) techniques [1], which solve the bulk Boltzmann
transport equation (BTE) stochastically. Starting with quasi-
parabolic band approximations, the method has evolved to
include numerical dispersion relations (on k-meshes), me-
chanical stress, and transport in alloys. However, the main
weakness of MC is its statistical nature, making rare events
(e.g. off-state current) difficult to simulate and adding random
noise, which limits self-consistent convergence with elec-
trostatics. Deterministic methods for solving the bulk BTE
also exist, the most prominent being the spherical harmonics
expansion (SHE) of the angular dependence of functions in
k-space [2]. However, even with analytical band structures,
SHE is still computationally expensive. Bulk BTE methods are
ideally suited for path-finding in short-channel devices that do
not exhibit quantum confinement effects, such as high-speed
bipolar transistors [3].



When considering path-finding in nano-scale MOSFETS,
we need to address both the shortness and the narrowness
of their channels, which are typically fins or gate-all-around
(GAA) nanosheets. Here, quantum confinement is of ma-
jor importance. Simulation methodologies that incorporate a
Schrodinger-Poisson solution represent the confined states in
the channel as wave modes, which leads to a new transport
formalism: the subband Boltzmann transport equation (SBTE)
[4]. SBTE becomes more efficient for narrower channels,
since the computational burden grows with the number of
modes in the channel, which scales with the square of its
cross-section area. Non-parabolic band models with numerical
dispersion relations can be readily used [5] and with that
SBTE incorporates several additional effects: ground-state
energy and effective-mass change induced by confinement,
mechanical stress and alloy effects, density-of-states (DoS)
and scattering in a low-dimensional gas, and performance-
limiting physical mechanisms at very small device dimensions,
such as roughness scattering and source-drain tunneling [6].
The SBTE has been demonstrated to work with realistically
large device dimensions across a range of technology nodes,
from bulk MOSFETs and FinFETs [7] to A14 nanosheets [8].

Following this trend, one may be led to believe that non-
equilibrium Green’s functions (NEGF) are the next logical
advancement for nano-scale MOSFETs, as they replace semi-
classical by coherent quantum transport. NEGF massively
expands computational effort, even when ballistic, compared
to SBTE, as instead of low-dimensional rate equations, wave
equations need to be solved for each energy grid-point. Since
inverse-matrix elements of indefinite matrices are needed, di-
rect methods must be used, such as recursive Green’s functions
(RGF) or Sellnv [9]. When modeling scattering in NEGF,
local approximations are used for phonon scattering self-
energies [10], which are derived from Fermi’s golden rule
and are thus not different from the semi-classical scattering
models in SBTE. Spatially-correlated scattering self-energies,
such as Coulomb and roughness scattering, result in non-local
operators that need to be represented by full matrices, thus
eliminating efficiency gains from operator sparsity. A common
workaround is to simulate devices with random distributions of
charges and randomly rough Si/SiO, interfaces [11]. However,
this requires ensembles or hundreds to thousands of devices
to be simulated with NEGF to obtain average characteristics.

Advanced transport in silicon is an algorithm-limited prob-
lem. Its recent success was enabled by the availability of band
and scattering parameters that were investigated as early as
the 1950s [12] and 1970s [13], respectively. With computing
power becoming abundant and devices shrinking to reduce the
number of conducting modes, methods such as SBTE have
become feasible. The fidelity of advanced transport models
in silicon is derived from the experimental characterization
of band gaps, effective masses, and mobilities in bulk Si and
thin films, and has been repeatedly confirmed by comparing
device simulations to experiments. All methods (MC, SHE,
SBTE, NEGF) are or have the potential to be well-integrated
in TCAD-software, allowing input of process-simulated ge-
ometries [7] and embedding of advanced transport domains in
a drift-diffusion (DD) simulation [14]. In the case of our GTS
Nano Device Simulator (NDS), the SBTE solver is presented
as an add-on to the DD-based device simulator Minimos-

NT, simplifying usage and facilitating integration with other
components. All presented methods can take advantage of
modern parallel hardware, and SBTE in particular offers high-
level parallelization opportunities and thus scales very well on
parallel CPUs; however, the computational burden of SBTE
scales ~ O(A*) with the channel cross-sectional area and
while 5nm thin NWFETs can be simulated within 30 min,
practical-sized FinFETs have a turn-around-time (TAT) of 1-2
days. This underlines the necessity for automated calibration
of simpler DD-based [8] or even compact models against ad-
vanced transport models in order to leverage them in practice.

B. Novel Channel Materials

While advanced transport modeling in silicon is a algorithm-
limited problem, it’s quite the opposite for channel materials
beyond silicon, of which most pose data-limited problems.
One of the most prominent post-Si material candidates are
transition metal dichalcogenides (TMDs). Advanced transport
methods can be readily applied to materials such as MoS,
with some modifications [15]. However, there is currently no
consensus on the model parameters for MoS,, especially for
the complex electron-phonon interactions expected to occur
within the material based on first-principles calculations [16].
While initially there was a large gap between experimentally
observed and simulated mobilities, the gap has recently nar-
rowed from the experimental side [17], thanks to improved
process control and dielectrics.

III. DESIGN-TECHNOLOGY CO-OPTIMIZATION

TCAD plays an important role in Design-Technology Co-
Optimization (DTCO): In principle, TCAD predicts device
characteristics from process assumptions through process and
device simulation, from which compact models can be ex-
tracted to predict the impact of technology parameters and
circuit design on a design’s performance. In this paper, we
use DTCO to highlight the importance of tool integration
in TCAD. One of the key components of our GTS Cell
Designer (CD) DTCO flow is the parasitics extraction (PEX).
Rather than implementing PEX as a stand-alone tool, it was
implemented as add-on to our device simulator Minimos-
NT. The integration has several immediate benefits: (i) as a
device simulator Minimos-NT already provides a field solver
core, (ii)) PEX and Minimos-NT share the same library of
material parameters, which ensures consistency between the
two, and (iii) being built on Minimos-NT, PEX can include
semiconductor regions in its R and C-extraction.

One guiding design principle of PEX was automation; the
goal was that PEX can process a large number of similar logic
cells that are generated in 3D from layouts either through
process emulation or constructive solid geometry. PEX extracts
and annotates a cell’s netlist by pruning and simplifying its
segment-adjacency graph according to a list of rules; tagging
layers and materials in the process flow provides the necessary
information to PEX for netlist extraction [18]. When the netlist
graph is found, the R and C values are determined by probing
the individual resistance and capacitance paths in the 3D
model of the cell. This process is made efficient by prob-
ing disjoint resistance branches simultaneously and re-using
LU-factors of the Poisson equation for multiple capacitance
probings in parallel.



In a practical DTCO flow, NMOS and PMOS transistor
compact models are extracted along with the cell’s R/C-
network to complete the netlist. To extract the compact models,
C/V and I/V characteristics of the transistors are simulated in
Minimos-NT and PEX is performed on the single transistors as
well to extract a single-device netlist containing the local R/C-
parasitics. This way the local parasitics are already accounted
for when optimizing the compact model parameters, which
would otherwis be double-counted if a bare transistor model
was optimized [19].

Fidelity of this process is bounded by the fidelity of
the models in Minimos-NT, which have been calibrated for
advanced logic nodes — in part through NDS. The inte-
gration minimizes the losses between TCAD and extracted
compact models and permits the verification of extracted
circuits through comparison with full-cell TCAD [20]. While
mainly algorithm-limited, introduction of novel interconnect
materials, such as ruthenium or nano-structured carbon, add a
data-limited problem to DTCO.

IV. ACCELERATORS IN TCAD

Classical TCAD is often time-consuming, especially in 3D.
This is an algorithm-limited problem. Recently, methods have
been discussed to accelerate TCAD simulations by means of
dedicated hardware and through machine-learning methods.

A. Algebraic accelerators

Algebraic accelerators focus on accelerating the solution of
the linear system in the solution phase of a simulator, which
might be part of a Newton-Raphson scheme, which itself is
inherently serial. Especially in 3D, the accumulated time in the
linear solver makes up the majority of the simulator’s runtime.

For 3D Poisson-like and convection-diffusion problems the
baseline solution strategy is to use an iterative solver like
GMRES or BiCGStab in combination with an incomplete
sparse LU (ILU) preconditioner. On a single thread this is also
the most efficient option. However, ILU algoritmhs based on
sparse Gauss elimination are not suitable for acceleration by
vectorization or multi-threading. Unlike complete sparse LU
[21], ILU algorithms maintain a low fill-in, making supernodal
optimizations ineffective.

The ILUPACK library parallelizes ILU using a multi-level
approach, that resembles a multi-grid approach [22]. Another
promising approach is using a fixed-point iteration to compute
the ILU elements, where the inner loop within each iteration
can be easily parallelized [23, 24]. However, during each
iteration, the ILU sparsity pattern is fixed, and adjusting it
requires additional steps, which are not easily parallelized,
making the resulting preconditioner somwhat worse than serial
ILU.

Finally, algebraic multi-grid (AMG) methods have seen
resurgence in the form of the AMGX library [25], which has
native support for GPU computing. While the results look
impressive, it must be noted that the effectiveness of AMG
is problem-specific; AMG works incredibly well for Poisson
and diffusion-type problems but less so for convective and
highly non-linear problems.

B. Development accelerators

Apart from the purely performance-focused algebraic accel-
eration, there are methods that can shorten the time-to-market

of TCAD software by automating the model development in
simulators. The use of expression templates [26, 27] can help
speed up the development of models based on coupled PDE
systems with many variables (e.g. dopant diffusion and stress
evolution in process simulation). Static expressions in C++
allow for optimization and syntax checking of the expressions
by the compiler. For non-linear systems, automatic differentia-
tion (AD) and dual numbers can be used to automate Jacobian
evaluation [28, 29], which would otherwise be done by hand.
Both methods put model development on a foundation that can
be developed and tested separately from the models, thereby
making development less error-prone. Automated assembly is
also more conducive to parallelization than hand-written code,
thereby benefiting overall simulator performance.

We have used this approach to derive a generic non-linear
coupled PDE solver platform from our Schrodinger-Poisson
solver (VSP) [30]. The platform has been successfully used to
develop a model for phase-change memories [31] as well as
a full process simulator.

C. Machine-learning accelerators

A general approach to applying machine-learning (ML) in
TCAD remains elusive and it is unclear if prediction of TCAD
results can be achieved in a generic way with the currently
available ML methods. Process and device simulation gener-
ally produce large amounts of data based on comparatively
few input fields, therefore a corresponding ML model would
need to “fill-in” a considerable amount of “gaps”, not unlike
image generation from a prompt. This raises major questions
about the fidelity of such ML models.

Successful applications of ML have been problem-specific,
where TCAD has been used to generate data to train an ML
model to predict a few KPIs in a specific application; the
trained model would then be be used in combination with
a optimizer to find optimal values for one or several KPIs
under varying constraints [32, 33]. This approach trades up-
front simulation cost to generate training data for a much faster
optimization loop. In some settings in 2D, the approach is
close to a break-even in runtime [33] but might still be pro-
hibitive in 3D, highlighting the need for effective acceleration
of TCAD software. It also demonstrates that currently the most
feasible way for engagement of ML with TCAD is to provide
toolboxes for surrogate-model building that are well-integrated
with the TCAD software.

V. CONCLUSIONS

In conclusion, we can say that there is plenty left to
do in TCAD. While major advancements have been made
in advanced transport models, the TAT for silicon devices
makes these tools less-than-practical for daily use. Algorithmic
improvements and automatic calibration of DD models would
help bring advanced transport modeling further into main-
stream TCAD. Collaborative efforts between computation and
experimental material science and TCAD would significantly
help unlocking the benefits of novel channel materials in
the semiconductor industry. Scaling-up TCAD and DTCO to
interface with circuit design would help accelerate chip devel-
opment but requires close integration of the tools to address
the varied challenges DTCO is facing. Finally, modernizing
TCAD software would bring efficiency benefits that would
enable novel ML-based optimization schemes.
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