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Abstract—This work presents a robust machine learning (ML)
framework for modeling the inner spacer etch process and its
impact on electrical behavior in gate-all-around (GAA) FETs.
Leveraging an in-house Process Monte Carlo (PMC) simulator,
the etch front evolution under diverse process conditions is
simulated. Gaussian Process Regression (GPR) demonstrates
superior accuracy (98.5%) in modeling inner spacer etch process.
Artificial Neural Networks (ANNs) are employed to map inner
spacer etch geometric variations to device current characteristics
with 98.2% accuracy. The proposed ML pipeline establishes
a direct process-to-device link, enabling accurate assessment
of electrical performance variations, and paving the way for
data-driven process-performance co-optimization in advanced
transistor technologies.

Index Terms—gate all around FETs, inner spacer etch, particle
monte-carlo, GPR, ANN, process variation, NSFET

I. INTRODUCTION

Gate-All-Around (GAA) Field-Effect Transistors (FETs)
have emerged as a leading architecture to extend CMOS
scaling beyond the 3nm technology node [1], [2]. Their
enhanced electrostatic gate control offers improved device
performance and energy efficiency compared to FinFETs. A
critical ad challenging step in the GAA FET fabrication is the
inner spacer etch process, which involves the selective partial
removal of SiGe to form nanoscale indents between stacked
silicon nanosheets [3]. The highly selective chemical etch [4],
[5] used in inner spacer etch is sensitive to interdependent
process conditions like temperature, pressure, flux, and time,
making predictive modeling challenging. Variations in this step
directly affects key geometrical parameters such as gate length
(L), spacer thickness (tsp), and gate-to-source/drain isolation,
which ultimately impacts both static and dynamic electrical
performance. A representative GAA nanosheet FET (NsFET)
structure is shown in Fig. 1.

Despite the clear connection between these etch-induced
variations and their impact on device performance, current re-
search often remains siloed between isolated process study and
device analysis. The process side, focused on etch outcomes,
operates largely independently from device simulations, which
assess electrical performance. This disconnection makes it dif-
ficult to establish a clear, direct route from process parameters
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Fig. 1: The schematic diagram of the three-sheet-stacked
NsFET. Cross-section across A-A’ of NsFET shows the inner
spacer with thickness tsp, gate length L, gate oxide thickness
tOX , sheet thickness H and sheet-to-sheet spacing of tSiGe.

to device-level electrical outcomes, leading to resource inten-
sive, costly, slow and cumbersome optimization cycles. To
address this, we propose a ML-based framework that captures
the complex inner spacer etch process dynamics and links
process variations directly to device-level electrical behaviour,
enabling accurate process-to-device variation modeling.

II. SIMULATION SETUP

A calibrated in-house voxel-based Particle Monte Carlo
(nanoPMC) simulator is used to model the inner spacer
etch process, incorporating incident particle energy, angular
distributions, and surface reaction probabilities (Fig. 2). The
simulator is calibrated using experimentally reported etch rates
and spacer profiles from [4], [5], with calibration details pro-
vided in [6]. The key process parameters considered include
neutral particle flux (F ), temperature (T ), etch time (ET ),
and Ge diffusion (D) during prior STI annealing [5]. The
inner spacer etch profile from the nanoPMC simulator is
exported into Synopsys TCAD suite for electrical analysis
(Fig. 3). The NsFET structure with the imported spacer
profile is generated for electrical simulation, with calibrated
electrostatic, quantum confinement and transport models [7].
To reduce the dimensionality of the training dataset, the 3D
etch front is projected to a representative 2D profile. A design
of experiments is used to generate 428 etch profiles per SiGe



Fig. 2: In-house voxel-based 3D Particle Monte Carlo
(nanoPMC) simulator workflow. Samples are drawn from
energy (IEDF) and angular (IADF) distributions during initial-
ization of particles. Surface reactions are executed based on
reaction probabilities, sampled with Monte Carlo algorithm.
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Fig. 3: Simulation flow for generating process-device training
data. NsFET inner spacer etch process results from PMC
simulator are extracted in form of a 3D etch front. The etch
front is exported to Synopsys TCAD, to create the spacer
profile in the 3 sheet NsFET device, which is used for electrical
simulation. The 3D etch front is reduced to a mean 2D etch
profile for ML process model.

thickness (tSiGe), covering variations in process parameters
as listed in Table I. From this dataset, 100 etch profiles are
selected for current–voltage simulation in TCAD.

TABLE I: Variation in the process parameters

Parameter Variation
Flux (F ) ±50%

Temperature (T ) ±10%
Etch Time (ET ) ±50%

Diffusion (D) ±20%
SiGe Thickness (tSiGe) 8nm, 10nm, 12nm

Fig. 4: Process-Performance modeling framework. Process pa-
rameters are input to the GPR process model which generated
the 2D etch front. ANN device model takes the etch front
along with gate (VG) and drain voltages (VD) to predict the
drain current (ID).

III. METHODOLOGY

A ML based process-device pipeline is setup consisting of
separate etch process model and a device electrical model,
cascaded to link etch process parameters with device-level
electrical behaviour as shown in Fig. 4.

A. Process Model

Modeling the inner spacer etch profile is critical for un-
derstanding its impact on GAA FET performance. However,
detailed physics-based simulations, such as PMC, are com-
putationally intensive and not viable for rapid process explo-
ration. To address this, we adopt a data-driven approach using
Gaussian Process Regression (GPR) to model the inner spacer
etch profiles. GPR is a non-parametric, Bayesian regression
method, which predicts etch profiles while also quantifying
uncertainty, making it well-suited for process variability anal-
ysis. Its kernel-based structure captures the complex nonlinear
relationship between process conditions and etch front shape,
even with limited training data. In this work, we used the
Radial Basis Function (RBF) kernel to calculate the covariance
(k) between input data points (x).

k(xi, xj) = σ2 exp

(
−||xi − xj ||2

2l2

)
(1)

where σ2 is the signal variance, and l is the length scale
controlling smoothness. These are optimized by maximizing
the log marginal likelihood using the L-BFGS-B algorithm
[8]. The resulting GPR model enables fast, accurate, and data-
efficient prediction of inner spacer etch profiles across diverse
process conditions.

B. Device Model

The drain current (ID) of the NsFET is modeled using an
Artificial Neural Network (ANN), which takes the 2D inner
spacer etch front, gate voltage (VG), and drain voltage (VD)
as inputs. Due to the wide dynamic range of ID, ranging from
nA in the subthreshold region to mA in strong inversion, the



output is transformed into logarithmic scale to reduce variance
and improve prediction accuracy in the subthreshold region.
However, a small error in logarithmic output would translate to
large error on linear scale. Therefore, the loss function which
minimizes the relative Root Mean Square (RMS) error on the
exponent of the outputs is used [7]. This is given as:

Loss = RMS(
eytrue − eypred

eytrue
) (2)

This approach ensures robust prediction performance across
both subthreshold and above-threshold operating regimes.

Fig. 5: Simulated and predicted etch front of inner spacer etch
for (a) time and (b) Ge diffusion variation. The GPR model
can accurately track the etch profile progression. Diffusion
variation affects curvature of spacer.

Fig. 6: True and predicted distribution of ∆L for varying
process parameters. The GPR model can accurately predict
derived geometrical parameters.

IV. RESULTS AND DISCUSSION

The GPR model predicts the evolution of etch front with
respect to ET and D as seen in Fig. 5. With increasing
ET , the entire etch front propogates and maximum etch depth
increases, while change in D only affects the curvature of the
etch front. Fig. 6 illustrates how change in gate length (∆L)
varies with individual process parameters, aligning closely
with ground truth data with an average relative error of 1.5%.
∆L decreases with increase in F , T and ET , due to increase
in tspr, which results in shorter L. D does not significantly
affect ∆L and shows very slight decreasing behaviour due to

Fig. 7: Validation of transfer characteristics predicted from the
ANN device model, with TCAD, across varying inner spacer
profiles and terminal voltages. Model is accurate with average
relative error of 1.8%.

Fig. 8: Correlation of the high current (IHIGH ) and low
current (ILOW ) with the process parameters. ILOW has a
stronger correlation with flux temperature and time compared
to IHIGH . Diffusion has weak correlation.

the increasing curvature of the etch front. These results confirm
the effectiveness of GPR in modeling the inner spacer etch
process and its impact on key device dimensions, ensuring
robust predictions under diverse parameter variations. The
ANN-based device model predicts the ID for the different
bias conditions and various input inner spacer etch profiles
generated from the process model. The predicted transfer char-
acteristics (ID − VGS) is validated against TCAD simulations
for different etch fronts (Fig. 7), achieving an average relative
error of 1.8%. Cascading the process and device models
reveals the impact of process variations on NsFET’s current
characteristics. As shown in Fig. 8, ILOW (ID at VG = 0
V and VD = 0.01 V) shows a strong positive correlation
with F , T , and ET , while IHIGH (ID at VG = 0.7 V and
VD = 0.01 V) exhibits a comparatively weaker dependence.
Fig. 9 validates this correlation by showing the variation of
Vth, IHIGH , and ILOW with respect to different process



parameters. ILOW exhibits strong sensitivity, varying by up
to 85% with etch time and as much as 150% with flux and
temperature. In contrast, IHIGH shows limited variation, with
a maximum change of 8% across the same process window.
Vth is extracted using constant current method, with Ith
computed for a 3 sheet NsFET having a sheet width of 20 nm
and sheet thickness of 5 nm, at L = 12 nm. Vth decreases with
increase in F , T and ET , which is in line with ∆L variation.
Ge diffusion has minimal influence on device performance,
with variations limited to 5%. Overall, the GPR-ANN-based
ML framework accurately captures the impact of inner spacer
etch process variations on NsFET electrical characteristics,
enabling reliable process–performance variability analysis.

tSiGe=
8nm
10nm
12nm

Fig. 9: Variation in IHIGH and ILOW with flux, etch temper-
ature, diffusion factor and etch time. Vth and IHIGH have a
maximum of 4% and 8% variation respectively across variation
in flux, temperature and time. ILOW varies 100-150% with
variation in process parameters with a positive correlation.
Diffusion factor has less impact on the current variation due
to inner spacer etch process.

V. CONCLUSION

This work presents a machine learning framework that
effectively bridges the inner spacer etch process and electrical
behavior in GAA FETs. A calibrated PMC simulator is used
to generate etch profiles under varying process conditions,
which are accurately modeled using GPR. The resulting etch
geometries are mapped to device currents through an ANN-
based model, enabling direct prediction of ID characteristics
from process parameters. The proposed GPR–ANN pipeline
captures the impact of process variations on device geometry
(∆L) and critical electrical metrics such as IHIGH , ILOW , and
Vth, demonstrating its potential for efficient process-device
co-optimization. This framework enables rapid and accurate
variability analysis, providing a valuable tool for advanced
technology development.
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