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Abstract—The design of optical metasurfaces for CMOS 

imagers is challenging due to the influence numerous physical 

parameters such as pattern size, density, and layer thicknesses. 

In this work, an original inverse design methodology based on 

multi-objective and high-dimensional global optimization is 

proposed and applied to the design of an RGB-IR color router, 

achieving significant performance enhancements compared to 

conventional refractive microlens pixels. This approach 

provides insights into the design process and establishes a 

framework for future advances in CMOS imager technology. 
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I. INTRODUCTION  

Optical metasurfaces for CMOS imagers are receiving 
growing interest from the electron device community [1][2], 
although their design faces significant challenges. Indeed, it 
involves the optimization of numerous physical parameters, 
such as the shape, size, and arrangement of nano scatterers, as 
well as the number and thicknesses of layers. Each of these 
parameters directly influences the optical response of the 
metasurface, including its efficiency, spectral selectivity, and 
angular performance. Furthermore, these parameters are often 
highly interdependent, leading to a complex, non-linear design 
space with multiple local minima. This task becomes even 
more challenging when considering fabrication constraints 
and when the metasurface operates over a broad spectral 
range. Therefore, advanced numerical optimization 
algorithms are essential to efficiently explore the high-
dimensional parameter space, at the cost of computationally 
intensive simulations. 

We present here a method for the design of optical 
metasurfaces. Following the approach proposed in [3] on RGB 
metasurface-enhanced imagers (color routers), more complex 
RGB and IR stacked metasurface designs are investigated and 
alternative optimization algorithms are examined. These 
developments could serve to improve the performance of 
architectures such as the monolithic RGBZ sensor [4], while 
addressing RGB decomposition and IR routing through a 
metasurface design compatible with fabrication constraints. 

 To design an RGB-IR color router, we compare several 
optimization strategies, including local gradient-based 
approaches and global optimization algorithms (Bayesian and 
metaheuristics), as well as single and multi-objective 
functions. While recent research [5][6] mostly evaluates these 
algorithms using single-objective functions, which can 
obscure multiple sub-objectives, our study addresses the 
challenge of multi-objective functions. We highlight the 
benefits of considering multiple objectives to achieve a design 

of an RGB-IR sensor that closely aligns with potentially 
complex product specifications.  

 Previous research has explored the optimization of RGB-
IR color routers through various approaches. For example, 
Zhao [7] proposed a theoretically ideal 3D metastructure 
optimized using the adjoint method, although its fabrication 
presents significant challenges. Zhong [8] and Hong [9] 
focused on single-layer metasurfaces using the local phase 
approximation method, with the former targeting visible-to-IR 
routing and the latter addressing the separation of four 
wavelengths. Similarly, Peng [10] introduced a complex 3D 
metastructure with QR-code-like stacked layers, optimized 
using a multi-objective approach, though it also poses 
fabrication difficulties. To the best of our knowledge, most 
algorithmic optimization studies for RGB-IR color routers 
have relied on single-objective functions, except for Peng 
[10]. However, no prior work has provided a comprehensive 
comparison between single-objective and multi-objective 
optimization approaches. In this study, we emphasize the 
benefits of adopting a multi-objective optimization framework 
by directly comparing it with the single-objective approach. 
This comparison demonstrates the capability of the multi-
objective method to offer a broader range of performance 
trade-offs, providing greater flexibility in meeting diverse 
design requirements. 

II. RGB-IR COLOR ROUTER DESIGN 

A. Color router architecture 

 

Fig. 1. Operational principle of the 3D nanostructured color router and 

cross-sectional views of it. a) The operational principle illustrates how a 
simplified metasurface directs light to different channels based on 

wavelength. b) The Y cut shows a layer of air (purple), an anti-reflective SiO2 

layer, 4 stacked metasurfaces, and a focal length SiO2 layer. c) The Z cut 

illustrates one of the 4 metasurfaces, composed of a 4x4 array of circular 

TiO2 nano-scatterers on a grid and embedded in a SiO2 layer. 
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The design of the RGB-IR color router, as illustrated in 

Fig. 1, involves the optimization of many parameters (up to 

70, including the widths and thicknesses of 4×4×4 

subwavelength nano-scatterers). Simulations were conducted 

using an in-house 3D Rigorous Coupled-Wave Analysis 

(RCWA) solver, with Perfectly Matched Layer (PML) 

boundary conditions applied along the 𝑧-axis and periodic 

boundary conditions in the 𝑥𝑦-plane. As an additional feature 

for minimizing the crosstalk between the four wavelengths, a 

typical Bayer layer of resist is added after the focal plane. 

However, this aspect will not be the main focus of our study, 

as we assume ideal filters in the analysis. 

B. Objective function 

To address the optimization challenge, the common 

approach consists of an objective function (to be minimized) 

and a dedicated optimization algorithm. In single-objective 

approaches, the four distinct objective functions Lossλ 

corresponding to blue (𝜆 = 450 𝑛𝑚), green (𝜆 = 550 𝑛𝑚), 

red ( 𝜆 = 650 𝑛𝑚) , and infrared ( 𝜆 = 940 𝑛𝑚)  spectral 

range are typically combined into a single scalar Loss 

function. The objective function used in this study, which 

extends the one introduced in [11] to accommodate RGB-IR 

operation, is detailed in equations (1,2).   

Loss =  ∑ (T𝜆  × Loss𝜆 -1)2

𝜆=𝑅,𝐺,𝐵,𝐼𝑅

 

Loss𝜆  =  
∬ [𝑃𝑧(𝜆) ∙ 𝑊(𝜆)]

𝑥𝑦−𝑝𝑙𝑎𝑛𝑒

∬ 𝑃𝑧(𝜆)
𝑥𝑦−𝑝𝑙𝑎𝑛𝑒

 

where T𝜆 is the transmittance of the color router for a given 

wavelength. 𝑃𝑧(𝜆) is the component along the 𝑧-axis of the 

Poynting vector evaluated at the interface above the resists for 

the same wavelength. 𝑊(𝜆) is a Gaussian weighting function 

that emphasizes light focusing on the center of each pixel. 

C. Optimization approaches 

Minimizing this single-objective function implicitly 

assumes equal importance among the four objectives. To 

address this limitation, a multi-objective optimization 

approach based on Pareto Front (PF) exploration is employed. 

This strategy provides a set of optimal trade-offs, allowing 

the designer to select the most suitable solution with respect 

to product specifications. By evaluating algorithms within 

both single and multi-objective frameworks, we identify the 

respective strengths and limitations of each approach, aiming 

to establish a robust methodology for optical metasurface 

design. 

III. RESULTS 

A. Gradient-based local optimization 

Gradient-based approach is one of the most used 

approaches when dealing with objective function 

minimization. Recent advancements in artificial intelligence 

have significantly contributed to the growing popularity of 

these algorithms. In particular, the development of automatic 

differentiation (autodiff), a technique that efficiently and 

accurately computes exact derivatives of functions, has 

played a key role. Autodiff libraries have recently been 

integrated into electromagnetic solvers, enabling precise 

computation of a system's response and its gradients. These 

capabilities provide clear directions for optimizing input 

parameters with respect to the targeted performance 

objectives.  

For the design of our color router using gradient-based 

approach we perform an optimization of the metasurface 

using the loss function presented in eq. (1,2).  We employ 

FMMAX [12], an autodifferentiable RCWA solver 

implemented in JAX, in conjunction with the well-known 

Adam optimizer for gradient descent. Fig. 2a illustrates the 

optimization process until convergence of the algorithm. The 

observed trend demonstrates the method’s efficienc  in 

minimizing the objective function in fewer than 200 function 

evaluations. However, although the objective function 

assigns equal weights to each wavelength, the final 

contributions shown in Fig. 2b vary because the algorithm 

optimizes the objective function without explicitly 

controlling their relative influences. 

 

Fig. 2. Single-objective optimization process using gradient-based 

algorithm a) Objective value as a function of iterations during optimization 
process demonstrating typical function minimization. b) Color routing 

efficiency for each wavelengths for the optimum found by the algorithm. 
Color routing is quantified by the objective value for each wavelength, 

expressed as (1 − 𝐿𝑜𝑠𝑠𝜆). 

This variation in performance across wavelengths is thus 

reflected in the resulting design characteristics. Fig. 3a 

presents the Poynting vector distribution for the four targeted 

colors, while Fig. 3b illustrates the optical efficiency across 

the RGB-IR spectrum. This design found by the algorithm, 

which effectively routes light to the targeted focal points, 

exhibits high routing efficiency in red and blue regions, 

compensating for a lower performance in the IR region. 

 

Fig. 3. Optical perfomances of the solution found by gradient-based 

algorithm a) Poynting vector distribution of the solution for different 

wavelengths (Blue, Green, Red, IR). b) Optical efficiency across various 
wavelengths for the solution compared to ideal performances of conventional 

microlens pixel (25%). Both solutions are filtered with ideal resits.  

        

 

 

 

 

   
 

   

   

   

   

   

   
    

C
o
lo
r 
 
o
u
ti
n
g
  

 
 

O
b
je
ct
iv
e 
v
al
u
e 

 

 unction evaluations Optimum

                  I 

          
 

   

   

   

   

   

   
  

Conventional lens 

image sensor

Color  outer image 

sensor

 avelength   

O
p
ti
ca
l 
 
ff
ic
ie
n
c 
  
 
                   I 

 -a is

 
-a
 
is

 -a is

 
-a
 
is

 -a is

 
-a
 
is

 -a is

 
-a
 
is

                

(1) 

(2) 



SISPAD 2025, September 24-26, 2025, Grenoble, France 

SISPAD 2025 – https://sispad2025.inviteo.fr/ 

If this behavior fails to align with the desired outcome, 

multiple restarts of the optimization procedure may be 

required, along with an empirical adjustment of the weights 

for the four terms. However, this approach does not guarantee 

a comprehensive exploration of the solution space. 

Furthermore, it is sensitive to the choice of the initial 

conditions, which are determined randomly. If the initial 

conditions do not vary significantly, the algorithm is likely to 

converge to the same local minima. As a result, while this 

method is highly efficient for exploiting specific regions of 

the design space, it is less suitable for problems requiring a 

more global exploration of the parameter space to uncover a 

wider range of potential solutions. 

B. Single-objective global optimization  

Following a recent benchmark of high-dimensional 

Bayesian optimization algorithms, which included more than 

20 parameters [13], and demonstrated the superior 

performance of TurBO [14], we adopted this approach to 

optimize the RGB-IR color router. Trust Region Bayesian 

Optimization (TurBO) is a scalable Bayesian optimization 

algorithm designed for high-dimensional problems. It 

operates by dividing the search space into localized Trust 

Regions (TRs), where a surrogate model, such as Gaussian 

Process, is used to balance exploration and exploitation. The 

size of each TR is dynamically adjusted based on 

optimization success: regions expand when improvements are 

found and shrink otherwise. This strategy enables efficient 

optimization by focusing on promising areas of the search 

space. 

 

Fig. 4. Single-objective optimization process of TurBO algorithm a) 
Objective value as a function of iterations during optimization process 

demonstrating typical exploitation-exploration mechanisms of TurBO 

algorithm. b) Color routing efficiency for each wavelengths in the 4 Trust 
Regions explored by TurBO. Color routing is quantified by the objective 

value for each wavelength, expressed as (1 − 𝐿𝑜𝑠𝑠𝜆). 

The results for each TR are presented in Fig. 4a, which 
shows clear decreases in the objective value as the number of 
evaluations increases. After nearly 30,000 function 
evaluations, the optimizer identified four distinct solutions, 
each located in a different TR. These four solutions are 
illustrated in Fig. 4b. While the solution in TR3 yields the 

lowest objective value and maximizes both the red and IR 
responses, TR2 offers a better trade-off among all four 
wavelengths. This analysis demonstrates that, although 
TurBO selects TR3 based on its minimal objective 
value,  other TRs offer alternative solutions with different 
trade-offs. 

 

Fig. 5. Optical perfomances of the solution found by TurBO algorithm a) 
Poynting vector distribution of the solution found in the second trust region 

for different wavelengths (Blue, Green, Red, IR). b) Optical efficiency across 

various wavelengths for the solution found in the second trust region 
compared to ideal performances of conventional microlens pixel (25%). Both 

solutions are filtered with ideal resits.  

 Fig. 5a presents the solution in TR2, showing the Poynting 

vector distribution for the four targeted wavelengths. Fig. 5b 

shows the optical efficiency across the RGB-IR spectrum. As 

the solution found by the gradient-based approach, we observe 

that, for all considered wavelengths, the efficiency exceeds the 

one of conventional micro lens image sensors (25%). 

However, while TurBO offers a few solutions corresponding 

to different performance levels, it is important to highlight that 

for both methods relying on a single-objective function, the 

approach inherently limits the flexibility to identify a solution 

that best meets specific product requirements. This limitation 

arises because the contributions of the four RGB-IR channels 

are determined empirically using ad-hoc weights, which may 

not fully capture the trade-offs needed for targeted 

performance. 

C. Multi-objective global optimization 

a) General case 

To overcome the limitations of single-objective 

optimization, we adopted here a multi-objective strategy. In 

this kind of approach, we intend to discover a Pareto front of 

solutions. This concept essentially reflects the following 

statement: a PF is a set of solutions that are not dominated by 

other solutions. This means that when we intend to minimize 

𝑘 conflicting objective functions with 𝑓𝑖(𝑥) the 𝑖-th objective 

function, and 𝑥 being a vector of parameters in the design 

space 𝑋 , a solution 𝑥1  dominates another solution 𝑥2 

(denoted as 𝑥1 ≺ 𝑥2 ) if and only if equations (3,4) are 

satisfied. 

𝑓𝑖(𝑥1) ≤ 𝑓𝑖(𝑥2) for all 𝑖 ∈ {1,2, … , 𝑘} 

𝑓𝑖(𝑥1) < 𝑓𝑖(𝑥2) for at least one 𝑖 

Solutions that are not dominated by any other solution are 

considered Pareto-optimal. The set of all Pareto-optimal 

                
 

   

   

   

   

   

   

  

O
b
je
ct
iv
e 
v
al
u
e 

 

 unction evaluations   

         

C
o
lo
r 
 
o
u
ti
n
g
  

 
 

                  I 

 valuated points      Minimum          rust  egion

 rust  egions     

  

   

            

  

          
 

   

   

   

   

   

   
  

Conventional lens 

image sensor

Color  outer image 

sensor

 avelength   

O
p
ti
ca
l 
 
ff
ic
ie
n
c 
  
 
                   I 

 -a is

 
-a
 
is

 -a is

 
-a
 
is

 -a is

 
-a
 
is

 -a is

 
-a
 
is

                

(3) 

(4) 



SISPAD 2025, September 24-26, 2025, Grenoble, France 

SISPAD 2025 – https://sispad2025.inviteo.fr/ 

solutions forms the PF, which represents the trade-off surface 

in the objective space. It can be expressed as in equation (5). 

𝑃𝐹 =  {𝑓(𝑥) ∶  𝑥 ∈ 𝑋, ∄  𝑥′ ∈ 𝑋 s. t. 𝑓(𝑥′)  ≺ 𝑓(𝑥)}     

where 𝑓(𝑥) is the vector of objective function values. The 

PF then provides a set of optimal trade-offs, enabling the 

choice of a solution based on preferences for the conflicting 

objectives. 

b) Color Router application 

For the design of our color router, we will use a well-

known multi-objective optimizer implemented in pymoo 

framework [15]: NSGA-III [16]. This algorithm, derived 

from genetic algorithm, operates by iteratively generating 

populations of solutions and ranking them using non-

dominated sorting to identify Pareto-optimal candidates. It 

incorporates a reference-point-based selection mechanism, 

which ensures diversity by projecting solutions onto 

predefined reference points in the objective space, making it 

particularly suitable for problems with many conflicting 

objectives, such as color-routing trade-offs in our design.  

Fig. 6a presents the PF obtained using the NSGA-III 

algorithm after 30,000 evaluations, matching the evaluation 

count of TurBO. It illustrates the variety of possible designs 

within the multi-objective space, each corresponding to 

different system performances. Examples are presented in 

Fig. 6b-c, corresponding to two designs favoring IR and blue 

transmission respectively. Fig. 6d, present a solution 

achieving a good balance between the four objectives. This 

approach significantly facilitates the exploration of the search 

space, enhancing the capabilities for comprehensive inverse 

design of optical metasurfaces. 

 

Fig. 6. Multi-objective Pareto front obtained by NSGA-III algorithm a) Star 

coordinate plots exhibiting the Pareto front of all the possible feasible designs 
leadings to different performances regarding each wavelength. b-d) Optical 

efficiencies of selected Pareto-optimal designs emphasizing: b) maximum IR 

transmission, c) maximum blue transmission, d) balanced trade-off across all 

four objectives. 

IV. CONCLUSION  & DISCUSSIONS 

In this study, we demonstrate the relevance of multi-

objective global optimization for the design of RGB-IR 

metasurface-based CMOS sensor design. While gradient-

based single-objective optimization is effective for exploiting 

specific regions of the design space in very few iterations, it 

is less suited for problems involving multiple competing 

objectives. Then, combining multi-objective and global 

optimization enables both precise design and a complete 

exploration of trade-offs between RGB-IR channels, which is 

crucial for achieving a comprehensive inverse design 

methodology. 

The presented results focus on a controlled scenario, 

assuming a collimated angle of incidence and a single 

wavelength per color region, which streamlines the 

optimization process.  Future work will extend this approach 

to more complex conditions, such as angular dispersion, off-

axis illumination, and the impact of spectral crosstalk 

between channels. Nevertheless, the multi-objective 

approach proves robust, efficiently navigating the high-

dimensional parameter space and offers a more 

comprehensive and adaptable framework compared to single-

objective methods.  
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