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Abstract—We simulate nickel silicidation in one and two space
dimensions via physics-informed machine learning. Our machine
learning models are solely trained on the governing physical laws
in the form of a reaction-diffusion system, without requiring
measurement or simulation data. In 1D, our model yields
accurate predictions across a parametric temperature range. The
2D process is well approximated away from irregular domain
features. Compared to classical state of the art simulations,
our models achieve speedups of three orders of magnitude. We
further discuss potential extensions to the approach, including
the incorporation of measurement data for calibration purposes
and enabling broader applicability to process optimization tasks.

Index Terms—physics-informed machine learning, reaction-
diffusion system, silicidation

I. INTRODUCTION AND MODEL

Ohmic contacts between metal and semiconductor materials
are crucial for semiconductor technology, particularly for
reducing contact resistance in miniaturization efforts. These
contacts are typically formed through silicidation, where a
thin metal layer is deposited on the silicon surface, and
a silicide layer is then created during annealing. Nickel is
commonly used for ohmic contacts on n-type silicon, but
various nickel-silicide phases exist, some of which do not yield
ohmic contacts. The phase that emerges, and consequently
also the quality of the resulting ohmic contact, depends on
the annealing temperature, duration, and the ratio of Ni to Si
atoms [!]. Numerical modeling of this process can therefore
play a significant role in optimizing the performance of the
resulting device.

A continuum model based on a reaction-diffusion system for
the multi-phase Ni silicidation was proposed in [2]. Since this
model is implemented in commercial TCAD tools, such as the
Sentaurus software from Synopsys [3], it will be used as the
basis of this work. The following reactions are implemented:
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2Ni + Si — NisSi, NisSi + Si — 2NiSi, NiSi + Si — NiSi,,
with associated reaction constants k1, ks, k3, respectively. The
diffusing species are Si and Ni with the effective diffusion
constants Dg; and Dy, respectively. Both the diffusion and
reaction constants are given by Arrhenius laws

Dx(T) = Dx ge” Bx/*oT, (1)
]{JZ(T) = kiﬁoe_Ei/kBT- (2)
The model then takes the following form:
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As initial conditions we impose vanishing initial concentra-
tions for all silicide phases and set Cyi(x,0) = Cp n; within
the geometry of the Ni layer and Cs;(x, 0) = Cp gi within the
Si domain. Here, Cjy x denotes the equilibrium concentration
of phase X, which is obtained from its respective density. At
the spatial boundaries of the simulation domain we employ
vanishing Neumann boundary conditions for the diffusing
species to resemble reflecting boundaries. For the constants
Dsi 0, Dnio, Eni, Esi, k1, ko, k3, By, Ea, E3, and Cy x we
use the default values from Synopsys Sentaurus [3].

The common way of simulating such reaction-diffusion
systems is by employing numerical solvers based on finite
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element methods (FEM). These methods are well-understood
and yield accurate simulations of the silicidation process
provided that the discretization is sufficiently fine. However,
they are often computationally expensive, in particular in the
case of 2D or 3D spatial domains. This becomes a problem
especially for calibration and optimization tasks, where the
simulations need to be run a lot of times to match given
(measurement) data and to find the ideal set of parameters
for the respective application.

We, therefore, use an alternative approach to solving the
reaction-diffusion system based on neural networks (NN),
which will be introduced in more detail in Section II. We will
apply this approach to two settings which will be presented in
Section III: (i) A one-dimensional (1D) problem with a sharp
initial boundary between the silicon and the nickel regions and
(ii) a two-dimensional (2D) problem with a thin, rectangular
nickel region placed on top of a wider silicon region, thus
representing the edge of a deposited nickel layer. Both settings
are used to assess the performance of the NN-based approach
in comparison to the FEM solver of the Sentaurus process
simulation tool [3] in Section IV. In Section V we present our
conclusions.

II. METHOD — PHYSICS-INFORMED MACHINE LEARNING

A novel approach to simulate physical systems is provided
by physics-informed machine learning [4]. In contrast to
classical machine learning techniques, this approach directly
uses the governing physical laws in the training process instead
of, or in addition to, data from simulations or experiments. The
training is applied to a NN that approximates the solution of
the physical process [5]. If the system parameters are fixed,
such NN is referred to as a physics-informed neural network
(PINN). In addition, the NN can take system parameters as
inputs to map general configurations to the resulting solution
of the system. Such NN is referred to as a physics-informed
neural operator (PINO). Although the training of PINNs and
PINOs can be computationally rather expensive, their evalua-
tion is typically several orders of magnitude faster compared
to classical numerical approaches. Hence, a PINO can be
used as a surrogate model and can, e.g., be implemented in
optimization pipelines.

Physics-informed machine learning has already been suc-
cessfully used across various applications [6]. In this paper,
we present a PINN and a PINO that approximate the sili-
cidation process. The core of these models are NNs with
trainable weights. Similar to the system’s solution, their input
dimensions are the spatio-temporal variables (x,t) and, for
the PINO, parameters determining the temperature profile. The
NN outputs are the values of all concentrations at (x, t). For
the NN architectures, we use generic multilayer perceptrons
here. For an overview of alternative architectures and a com-
parison of their performances for a related silicidation problem
we refer to [7]. The physical laws have been reformulated in a
loss function whose minimization is equivalent to solving the
PDE system (3)—(7), the initial conditions, and the boundary

conditions [5]. This minimization problem is the models’ train-
ing task. In particular, no data, e.g., from classical simulations
or measurements, is used for the training process. All models
presented in this work have been implemented in the Python-
based library DeepXDE [8].

III. SETTINGS

We consider the following two settings in this work.

A. 1D setting with parametric temperature

In the first setting, the initial Ni-Si interface is assumed
to be a straight line at depth 200nm. This allows us to
assume homogeneity in the other space dimensions and hence
to reduce the effective spatial dimension of the system to one.
The initial Si-depth is assumed to be 800 nm, resulting in a
total domain length of 1 gm. This simple one-dimensional case
models the silicidation process far away from the edges of a
deposited Ni layer. The temperature profile is assumed to be
homogeneous with a value between 300°C and 700°C. We
train a PINO over this temperature domain. To ensure the
correct behavior at the spatial boundary and to simplify the
training task, the reflecting boundary conditions are directly
incorporated in the PINO’s structure by suitably transforming
its input as described in [9]. Additional transformations are
applied to the PINO’s output to ensure that all concentrations
are non-negative and that the Ni and Si concentrations are
bounded from above by Cj i and Cpgi, respectively. The
fully connected NN inside the PINO is composed of 3 x 50
hidden units.

B. 2D setting with fixed temperature

Vacuum

Initial Ni region

Initial Si region

Depth [nm]

750 1000
Width [nm]
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Fig. 1. Initial Ni (blue) and Si (orange) regions in the 2D setting with sharp
boundary (dashed yellow line) and the time-invariant vacuum region (white).

In real-world applications, the 1D setting falls short because
it is unable to model the behavior of deposited Ni layers whose
width is comparable to their thickness. To take into account the
influence of edge regions, we consider a thin rectangular Ni
block of depth 50nm and width 1 pm that is placed on top
of a wider Si region of width 1.5 um and depth 450 nm.
A visualization of this configuration is given in Fig. 1. The
reduced width of the initial Ni region leads to a rectangular
vacuum region. In the model, we assume this vacuum region
to be invariant during the silicidation process by considering
the spatial computational domain (z,y) € ([50 nm, 500 nm] x
[0 #m, 1.5 pm]) U ([0 nm, 50 nm] x [0 gm, 1 pm]) for all times.
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To ensure that no particles can flow into the vacuum region,
vanishing Neumann boundary conditions are imposed at the
vacuum interface. We emphasize that this irregular, L-shaped
spatial domain together with the sharp initial boundary be-
tween Ni and Si lead to a high complexity of the system
from both a computational and theoretical perspective. The
temporal domain is determined by the maximum annealing
time for which we have selected the value ¢ = 2 min; this time
has been found to be sufficient for capturing the silicidation
of the relatively thin Ni layer. In this 2D setting, we train a
PINN for the fixed temperature value T' = 500°C, i.e., without
a parametric temperature dependence. The PINN is composed
of 3 x 75 hidden units and transformations similar to the 1D
setting are applied to restrict the PINN’s output range and
to ensure that the reflecting boundary conditions at the outer
boundaries = 0,50 nm and y = 0, 1.5 ym are satisfied.

IV. RESULTS

To demonstrate the capabilities and limitations of physics-
informed machine learning to approximate silicidation pro-
cesses, we now analyze its performance in the two settings
introduced above. To assess the accuracies of the models, we
compare them to the results of Sentaurus Process, which uses
a state of the art adaptive time-stepping FEM solver.

A. 1D setting with parametric temperature

The PINO in the 1D setting is trained by a combination
of the Adam and the L-BFGS optimizer for about 4h on an
NVIDIA Quadro RTX 5000 (16GB RAM). For the reference
solver, we chose a uniformly spaced grid with step size 2 nm.
For an annealing time of 5min, the reference solver needs
about 20s of simulation time on a single core.
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Fig. 2. Predictions of the physics-informed neural operator (PINO) at
annealing time ¢ = 2min and temperature 7' = 500°C compared to the
reference simulation in the 1D setting.

TABLE 1
ACCURACY AND SPEEDUP OF THE PINO APPROACH IN THE 1D SETTING.

Annealing time H 10 s ‘ 1 min ‘ 2 min ‘ 5 min
Mean L2-error (T' = 500°C) 4.48% | 5.24% | 6.78% | 7.31%
Speedup factor evaluation 2500 2750 2800 2875

The PINO’s predictions at ¢ = 2min for 77 = 500°C
together with the simulation data from the reference solver

in the 1D setting are display in Fig. 2. It can be seen that the
PINO’s predictions are in good agreement with the reference
solution. The main difference at ~ 200nm in the Ni profile
is due to the step of concentrations at the Ni-Si interface.
The mean relative L2-distances between PINO predictions and
reference simulations at different times are given in Tab. I
(omitting concentrations with L?-norms < 0.1nm™3). We
restrict the comparison to 7' = 500°C; similar error values
can be observed for general temperatures between 300°C and
700°C. From an application’s point of view, the achieved ac-
curacy is sufficient because the PINO’s errors are significantly
smaller than the estimated discrepancy between the model and
the actual physical process. In addition, the PINO respects
the conservation law of total Ni and Si concentrations up to
relative errors of below 1%. Lastly, we emphasize that despite
the computationally expensive training, evaluating the trained
model for general temperatures is computationally very cheap:
Evaluating the PINO for an arbitrary temperature on a spatial
grid of step size 2nm for 31 timesteps (once every 10s for
the annealing time ¢ = 5min) takes only a few milliseconds
on an ordinary laptop’s CPU, resulting in the speedup factors
stated in Tab. I compared to the classical solver.

B. 2D setting with fixed temperature

In the 2D setting, the PINN is trained similarly to the 1D
setting for about 6 h. For the reference solver, we use a mesh
with cell sizes about 5nm X 5nm, resulting in a simulation
time of about 240s on a single core.

TABLE 11
ACCURACY AND SPEEDUP OF THE PINN APPROACH IN THE 2D SETTING.

Annealing time H 10 s 1 min 2 min
Mean L2-error 2662 % | 19.87 % | 14.90 %
Speedup factor evaluation 1989 2320 2652

The PINN’s predictions at the annealing times ¢t =
10s, 2min together with the simulation data from the ref-
erence solver in the 2D setting are display in Fig. 3. Sig-
nificant differences can be seen close to the sharp edge of
the vacuum region, already at the annealing time ¢ = 10s.
These differences are due to the fact that the basic PINN
used here has difficulties to simultaneously approximate the
sharp initial Ni-Si boundary and the relatively fast reaction-
diffusion process close to the irregular vacuum interface. Away
from this region, the concentration values of the PINN and the
reference solution are in better agreement. Similar to the 1D
setting, the concentrations of NisSi and NiSi are very low
compared to NiSi, which is why we only show the latter in
Fig. 3. The error values at different times are stated in Tab. II
(computed similarly to the 1D setting). The conservation law
for Ni and Si is satisfied up to an error of less than 1%.
Lastly, we again emphasize the computational efficiency of
evaluating the trained PINN: Its evaluation for 13 timesteps
(once every 10s for the annealing time ¢ = 2min) on the
same spatial grid as used for the reference simulation takes
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Fig. 3. Predictions of the physics-informed neural network (PINN) at ¢ = 10s and ¢ = 2 min for the concentrations of Ni, Si, and the dominating nickel-
silicide NiSia compared to the reference simulation in the 2D setting. The color ranges are chosen according to the respective equilibrium concentrations.

about one hundred milliseconds on an ordinary laptop’s CPU,
leading to the speedup factors stated in Tab. II.

V. CONCLUSION AND OUTLOOK

We have implemented and trained neural networks (NNs)
that model nickel silicidation in a 1D and 2D setting. In 1D,
the comparison with classical simulations show that the NN
can indeed capture the process accurately. The model has a
parametric temperature dependency, allowing it to predict the
silicidation process for general temperatures without retrain-
ing. In the 2D setting, the limitations of the PINN are clearly
visible close to the sharp edges in the computational domain
and the sharp initial interface. Away from these irregular
regions, the silicidation process is captured more accurately.
To increase the accuracy in this setting, further refinements
need to be applied to the basic PINN used here, e.g., to
enhance its training process and its ability to approximate
the sharp initial Ni-Si boundary; see [6] for an extensive
overview of PINN improvement techniques. This is the subject
of future follow-up work. Further directions for extending the
present work include the addition of a parametric temperature
dependence in the 2D setting and a parametric dependence on
the initial Ni geometry to arrive at a PINO that can generalize
across different initial configurations. One main benefit of such
models is their computationally cheap evaluation. Concretely,
as indicated by the results from Section IV, speedups of about
three orders of magnitude compared to classical state of the
art simulations can be expected.

Lastly, we again emphasize that no measurement or simula-
tion data is used for the training here. Instead, the training is
based solely on the physical laws describing the process, for
which we have used the model from [2]. It should be noted that
the parameters used here have not been calibrated and should
thus merely be considered as prototype parameters. A major

opportunity for physics-informed machine learning is that this
calibration can naturally be included in the current approach by
adding the approximation of measurement data to the training
process and obtain the calibrated parameters via an inverse
learning task [2]. Nonetheless, we consider the currently used
model a useful prototype to assess the performance of physics-
informed machine learning, whose usefulness we see in the
process optimization of less established materials, such as SiC.
Since process parameters and material properties are less
well known for such materials, methods that allow for a fast
iteration of simulations can be hugely beneficial.
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