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Abstract—In this article, we propose a machine-learning 
(ML) based wafer contour approach for parasitic R/C modeling, 
leveraging a convolutional neural network (CNN) architecture. 
We demonstrate that our NN critical dimension (CD) model 
outperforms traditional rule-based approaches in predicting 
metal contours. With this capability, our NN RC-model exhibits 
excellent accuracy in predicting parasitic R/C. Furthermore, 
our NN RC-model is more efficient than the conventional 3D 
field solver tools. This demonstration manifests the possibility of 
an electrical-aware pattern optimization, enabling the co-
optimization from layout design to final electrical performance 
through the CNN-based CD/RC algorithm. 
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I. INTRODUCTION 

The impact of parasitic R/C has become increasingly 
critical for circuit performance in advanced nodes [1-5]. 
Traditional R/C extraction methods include the 3D field solver 
and the 2.5D rule-based approximation. The 3D field solver 
addresses Maxwell’s Equations to determine parasitic C 
among metal polygons. While it offers the highest accuracy, it 
is extremely slow and memory-intensive, making it unrealistic 
for large-scale circuits. To address this limitation, the 2.5D 
rule-based approach was developed. Compared to the 3D field 
solver, the 2.5D ruled-based method enables significantly 
faster extraction with reasonable accuracy of a full chip. This 
is achieved through pre-characterization and patten matching 
techniques [4-5]. However, the 2.5D approach still faces 
several challenges, such as limited pattern coverage that 
results in accuracy loss in complex environments, prolonged 
lead time due to the growing numbers of pre-characterized 
capacitance in the 3D solver as technology evolved, and the 
increasing accuracy demands for advanced nodes [4-6].  

Another factor that may affect the accuracy of parasitic 
R/C extraction from original design is the adjustment of 
lithography pattern on wafer for better process window. 
Industries have traditionally modeled this with overly 
simplified formulas, leading to inaccurate metal CD (and thus 
extracted R/C values). Therefore, how to accurately predict 
metal CD is crucial in modern IC design. Convolutional neural 
networks (CNNs) have been successfully demonstrated to 
excel in image processing [7-8], making them a promising 
approach to tackle the aforementioned challenges. In this 
study, we introduce a CNN-based model that accurately 
predicts the physical wafer CD and parasitic R/C utilizing 
simulated wafer images as input. 

This paper is organized as follows. Section II describes the 
NN methodology used in this paper. In Section III, we 
examine the accuracy and efficiency of NN-predicted 
contour/R/C models, comparing the results with commercial 
EDA 3D and 2.5D RC extraction tools. Finally, the 

conclusions are drawn in Section IV.  

II. METHODOLOGY 

To address the issue of inaccurate CDs in wafers caused 
by traditional rule-based formulas and the challenges of 2.5D 
R/C extraction, we present a CNN-based modeling flow (as 
depicted in Fig. 1). To capture the physical metal contours on 
wafers, our approach involves the preparation of a training 
dataset consisting of 20,000 pairs of drawn and simulated 
wafer images from advanced node with sub-nm resolution. A 
field-of-view (FOV) is designed with an area of 2 m  2m 
to facilitate efficient training. In practical layout designs, 
metal polygons frequently extend beyond the FOV, which can 
adversely affect the accuracy of RC extraction. To mitigate 

 
Fig. 1. The flow-chart of our CNN-based modeling methodology. The 
input data is pre-processed from drawn GDS layouts to simulated wafer 
contour images for CNN training. 

 
Fig. 2. Illustration of dividing a long or wide metal polygon into smaller 
segments and assigning a unique identifier to each segment to avoid 
duplicate calculations. 
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this issue, we divide long/wide metal polygons into smaller 
segments (as shown in Fig. 2) and compute the R/C values for 
each segment. The overall R/C of the targeted metal polygon 
is then obtained by summing the R/C values of all segments. 
By repeating this process and traversing the entire layout with 
a fixed FOV, we can determine the R/C values for all metal 
polygons (Fig. 3). This approach facilitates the preparation 
and extraction of the training dataset using the commercial 3D 
field solver tool. With this comprehensive training dataset, we 
can effectively train our CNN models for CD and R/C 

prediction by employing the mean square error (MSE) loss 
function. 

III. RESULT AND DISCUSSION 

Fig. 4(a) presents a comparison of accuracy in metal CD 
between the rule-based formula and our NN CD-model. 
Although the rule-based formula provides some 
improvements in reducing CD offsets, our NN CD-model 
achieves an even more significant reduction. The 
corresponding cumulative probability plot for CD is shown in 
Fig. 4(b). Notably, our NN-CD model is capable of predicting 
not only metal CDs but also metal spacings. As illustrated in 
Fig. 5, the metal spacing predictions from our NN CD-model 
outperform those of the traditional rule-based formula. In 
other words, compared to traditional rule-based wafer CD 
models, our NN CD-model offers superior accuracy for both 
metal CD and spacing, i.e. it effectively captures the physical 
metal contour on the wafer. As a result, with precise 
predictions of physical wafer contour, our NN RC-model can 
accurately predict inter-layer capacitance for single layers and 
cross-layer capacitance for multiple layers of Si. Fig. 6(a) 
evaluates the accuracy of parasitic capacitance predictions 
made by our NN RC-model compared to the commercial 3D 
field solver. The results demonstrate that the parasitic 
capacitance predicted by the NN RC-model (C_NN) closely 
matches the capacitance extracted by the commercial 3D field 
solver (C_3D). The benchmark between the NN RC-model 
and commercial 2.5D RC tool, depicted in Fig. 6(b), shows 

 
Fig. 3. Illustration of partial capacitance extraction by scanning the entire 
layout with a fixed FOV. In this example, there are 9 FOVs. 

 

 
Fig. 4. (a) CD distribution comparison among drawn, rule-based, and 
NN CD-models (using simulated wafer contours as the reference), and 
(b) its corresponding cumulative probability. 

 

 
Fig. 5. (a) spacing distribution comparison among drawn, rule-based, 
and NN CD-models (using simulated wafer contours as the reference), 
and (b) its corresponding cumulative probability.  
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that the C distribution of NN RC-model is significantly 
narrower than that of 2.5D tool counterpart. A similar trend 
can be observed for cross-layer coupling capacitance, as 
shown in Fig. 7. In the analysis of cross-layer capacitance for 
multiple layers, our NN RC-model consistently delivers 
superior prediction results compared to 2.5D rule-based RC 
tool, achieving accuracy comparable to 3D field solver. This 
suggests that machine-learning techniques, such as our NN 
model, are more effective than traditional rule-based 
approaches for parasitic capacitance extraction. 

Beyond parasitic capacitance, our NN RC-model also 
demonstrates high accuracy in predicting parasitic resistance. 
Fig. 8 compares the parasitic resistance accuracy across our 
NN-RC model, the 2.5D RC tool, and the 3D field solver. As 
shown in Fig. 8(a), our NN RC-model achieves remarkable 
accuracy in predicting parasitic resistance, aligning closely 
with commercial 3D field solver (i.e., R_NN  R_3D). The 
R distribution, shown in Fig. 8(b), demonstrates that the 
variation range of NN RC-model is comparable to that of 
commercial 2.5D tool. In addition to the metal CD, another 
key factor influencing parasitic resistance is metal density, as 
variations in density lead to changes in metal thickness. In this 
context, metal density is defined as the percentage of the area 
covered by metal polygons within a fixed size of 40m  
40m. Fig. 9 presents a comparison of resistance accuracy 
across different density levels between the NN-RC model and 
the 3D field solver. The result demonstrates that the NN-RC 
model effectively captures the relationship between parasitic 
resistance and density with a high degree of accuracy. Notably, 

 

 
Fig. 6. (a) Evaluation of NN RC-model for parasitic capacitance of single 
M3-layer, and (b) C distributions comparing the NN RC-model and 
2.5D tool (using 3D field solver results as a reference). 

 

 
Fig. 7. (a) Evaluation of NN RC-model for parasitic capacitance of 
multiple M3-M4 layers, and (b) C distributions comparing the NN-RC 
model and 2.5D tool. The NN RC-model remains closely aligned with 
the 3D tool and offers better accuracy than the 2.5D tool. 

 

 
Fig. 8. (a) Evaluation of NN RC-model for parasitic resistance, and (b) 
R distributions comparing the NN RC-model and 2.5D tool. R_NN and 
R_3D denotes the resistance extracted by the NN RC-model and 3D field 
solver, respectively. 
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the observed non-monotonic trend arises from the fact that 
metal thickness does not scale linearly with density.  

In addition to accuracy, efficiency is also crucial for 
parasitic R/C extraction. Fig. 10 compares the accuracy and 
efficiency of the 3D field solver, the 2.5D rule-based RC tool, 
and our NN RC-model. It can be found that our NN RC-model 
achieves a 20X improvement in efficiency over the 3D field 
solver, while simultaneously delivering higher accuracy than 
the 2.5D RC tool.  

With the well-developed NN CD- and RC-models, the 
feasibility of an electrical-aware co-optimization from layout 
design to final electrical performance can be manifested. Fig. 
11 illustrates the concept of the CNN-based electrical-aware 
pattern optimization flow. Please note that one of the primary 
objectives of this paper is to demonstrate the potential of AI 
techniques in advancing BEOL modeling for the community.  

IV. CONCLUSION 

We have developed a contour-driven solution for BEOL 
R/C extraction using a CNN-based algorithm. Our NN CD-
model well predicts metal contour, outperforming 

conventional rule-based methods and thus effectively 
reducing the Si-to-Simulation (S2S) gap. Our NN-RC model 
demonstrated a new approach with a favorable balance 
between accuracy and efficiency. It provides superior R/C 
predictions and efficiency at the same time compared to the 
existing solutions. Consequently, the co-optimization of 
layout and electrical performance is feasible for the first time 
under this solution. Our study explores the potential of 
advanced AI models in parasitic RC modeling for the BEOL 
community. Enhanced collaboration between the foundry and 
EDA partners is crucial to integrate these innovations into 
industrial production flows.  
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Fig. 9. Comparison of the predicted median () and standard deviation 
() from the NN-RC model with varying densities, benchmarked against 
the 3D field solver tool. Here, density is defined as the percentage of the 
area covered by metal polygons within a fixed size of 40m  40m. 
Sample points for density include values of 0.1, 0.3, 0.5, and 0.7. 

 
Fig. 10. Comparisons of accuracy and efficiency across the 3D field 
solver, 2.5D rule-based RC tool, and our NN RC-model. The accuracy 
index is defined as the average R2 value obtained from 28 GDS layouts. 

 
Fig. 11. A flowchart of the electrical-aware pattern optimization for 
advanced nodes. With the NN-RC model, it is promising to achieve the 
co-optimization from layout design to final electrical performance. 


