SISPAD 2025, September 24-26, 2025, Grenoble, France

Scientific Machine Learning (SciML) —
How the fusion of Al and physics 1s giving rise to
promising simulation methodologies

Andreas Rosskopf
Department Modeling and Al
Fraunhofer 1ISB
Erlangen, Germany
andreas.rosskopf @iisb.fraunhofer.de

Xuepeng Cheng
Department of Data Science
Friedrich-Alexander-Universitit Erlangen-Niirnberg
Erlangen, Germany
xuepeng.cheng @foxmail.com

Christopher Straub
Department Modeling and Al
Fraunhofer 1ISB
Erlangen, Germany
christopher.straub @iisb.fraunhofer.de

Daniel Tenbrinck
Department of Data Science
Friedrich-Alexander-Universitit Erlangen-Niirnberg
Erlangen, Germany
daniel.tenbrinck @fau.de

Abstract—The combination of physical modeling and machine
learning, known as Scientific Machine Learning (SciML), is
enabling a new generation of simulation methodologies. In this
work, we demonstrate the potential of SciML for simulating
silicide formation in Ni-SiC systems, a process highly relevant to
TCAD and device engineering. Four neural network architectures
— standard MLPs, enhanced mMLPs with residual connections,
interpretable Kolmogorov-Arnold Networks (KANs), and Cheby-
shev KANs (cKANs) — are benchmarked, each trained solely on
the governing physical laws. All models tested achieve accurate
results and enable rapid evaluation, providing large speedups
over traditional solvers. Among these, the mMLP yields the
best accuracy. These findings underscore the strong potential of
SciML for efficient and accurate TCAD simulations, paving the
way for scalable, data-integrated modeling of complex material
interactions in semiconductor technology.

Index Terms—Physics-informed neural networks, numerical
simulation, diffusion-reaction equations, scientific machine learn-
ing, silicidation

I. INTRODUCTION

Understanding and optimizing the interaction between met-
als and semiconductors is fundamental for the design and fab-
rication of current and future semiconductor devices [1]. Tech-
nology Computer-Aided Design (TCAD) simulation plays a
critical role in advancing this understanding, enabling detailed
modeling and predictive analysis of materials and processes.
TCAD simulations are indispensable for tackling challenges
in the development of high-performance devices, including
power transistors, diodes [2], and sensors [3]. This holds
in particular true for applications requiring high efficiency,
reliability, and operation under extreme conditions, e.g., high
temperatures or high voltages [1].

This work was supported by the Fraunhofer Internal Programs under Grant
No. PREPARE 40-08394.

The fundamental mathematical modeling and numerical
simulation of these processes typically rely on diffusion-
reaction equations, multi-phase systems modeling, and ki-
netic rate equations. These underlying equation systems are
traditionally solved using finite difference, finite elements,
or implicit numerical schemes. While these approaches pro-
vide a robust framework for simulating material interaction
dynamics, they face significant challenges considering the
computational complexity because solving multi-dimensional,
non-linear partial differential equations (PDEs) for multi-
component systems is computationally expensive. Further-
more, they are limited by simplified physical assumptions, e.g.,
constant diffusion coefficients or isotropic reactions that fail to
capture the full complexity of real-world material interactions.
Finally, realizing scalability of such simulations is difficult as
traditional methods struggle to efficiently scale when handling
multi-physics phenomena or coupling with external effects.

To address these challenges, this article proposes the com-
bination of Al-driven methods with traditional physical simu-
lation methods for simulating interactions between metals and
semiconductors. This approach has become known as Scien-
tific Machine Learning (SciML) in recent years and offers the
potential to overcome computational inefficiencies, improve
the accuracy of predictions, and integrate measured data into
simulation models to create more realistic surrogate models for
processes and devices. To demonstrate the potential of SciML
for interaction simulation, we focus on the interaction between
Nickel (Ni) and Silicon Carbide (SiC) in the context of creat-
ing ohmic contacts for wide-bandgap semiconductor devices.
The Ni-SiC system is a TCAD-relevant use case that embodies
the challenges of modeling metal-semiconductor interactions,
including multi-phase silicide formation, carbon redistribution,
and defect dynamics during high-temperature annealing. As
the foundation of our analysis, we leverage a quantitative
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model from Aleksandrov and Kozlovski [5], which describes
the mutual diffusion of components and silicide-formation
reactions in the Ni-SiC system. We quantitatively evaluate the
impact of the chosen neural network (NN) architecture of four
SciML approaches on the solution accuracy and simulation
runtime of the investigated models.

II. DIFFUSION-REACTION MODEL FOR Ni-SiC SYSTEMS

Many TCAD solutions, like Synopsys Sentaurus [4], use
mathematical models to describe the interaction between met-
als and semiconductors. In the following, we summarize the
mathematical modeling of Ni-SiC systems described in [5]
which is representative for many related models in this field.
This approach falls into the category of diffusion-reaction
models with boundary and phase-change dynamics, which in
particular includes mathematical terms for

« Diffusion Equations: Governed by non-linear PDEs

including multi-component diffusion terms.

« Kinetics: Reaction terms with different rate constants for

silicide formation, increasing dimensionality.

o Kirkendall Effect: Introduces asymmetry in diffusion

coefficients, requiring advanced numerical schemes.

Concretely, the model from [5] describes the silicidation
process via the concentration functions for Ni (Cyj), SiC
(Csic), carbon (C¢), and the relevant Ni silicides (Cyis;i,
Cni,si). It is assumed that all concentrations are homoge-
neously distributed in all directions except for the depth, hence
reducing the number of effective space dimensions to 1. The
model covers the two reactions Ni + SiC — NiSi + C and
Ni + NiSi — NipSi with reaction rates k; and ko, respec-
tively. The values of these constants depend on the annealing
temperature during the process. Similar to [5, Figs. 2 and 3],
we consider an annealing temperature 7' < 900° C here.
By suitably adapting the model’s parameters and including
other reactions, it is straight-forward to extend the model to
higher temperatures. The diffusion-reaction equations for the
concentrations of Ni, SiC, and C are of the form

OCni .
8tN =V - (D" VCxi) — k1CxiCsic — k20niChnisi, (1)

0Cs; .
8? € — V. (D*VCsic) — k1CniCsic, 2

0C,
5 =V (D" VCe) + kiCxiCic, 3)
with effective heterodiffusion coefficient given by
D* — DN1M7 )
Cni

where C'y, denotes the sum of all components’ concentrations
and Dy; is the metal diffusivity. They are coupled to the
reaction equations for Cyjs; and Cyi,gi. Similar to [5], the
initial Ni and SiC layers are assumed to be of the form

Coni, 0<x<h,
Chi(z,t =0) = ’ 5
Ni(@,t=0) {0, h<a<lL, )
0 0<z<h
Cs;i ,t=0) = ’ - 6
sicln,t=0) {%ﬁ,h<wSL7 ©

where x is the depth coordinate, & is the initial metal thickness,
L is the total depth, and Cp ni and Cp g; are the intrinsic Ni
and Si concentrations, respectively. The carbon and silicide
concentrations are assumed to be zero initially. At the spatial
boundaries (x = 0, L), zero Neumann boundary conditions are
imposed to model reflecting boundaries. For all parameters, the
same values as in [5, Figs. 2 and 3] have been chosen.

Such systems of equations are commonly solved numeri-
cally using the finite difference method (FDM). Note that a
fine discretization both in time and space or more advanced
numerical methods are required to solve the system accurately
due to the non-linear structure of the diffusion coefficient (4)
and the discontinuous initial conditions (5)—(6).

III. SCIML — GENERAL IDEA AND ARCHITECTURES
A. General idea

The general idea of SciML is to combine machine learning
methods with scientific models. In order to solve a model like
the one described above, the system’s solution is approximated
by a NN. The training of the NN, i.e., the optimization
of its internal parameters, is based on the physical model,
reformulated into an optimization task. Concretely, the gov-
erning equations are evaluated at a finite number of points
at which the difference between the left-hand and right-
hand sides, commonly referred to as the loss, is minimized.
Notice that only the evaluation of the governing equations is
necessary, hence allowing SciML to be applicable to equations
of high complexity. The coupling of multiple equations — like
the PDEs (1)—(3), initial conditions (5)-(6), and boundary
conditions — is achieved by the summation of the individual
losses to a composite loss function. A NN trained in this
way is referred to as a physics-informed neural network
(PINN) [6]. The composite loss function used for a PINN’s
training can be further extended by incorporating data-driven
loss terms. This enables the PINN to simultaneously adhere
to the governing physical laws and align with given data, e.g.,
from measurements.

B. Architectures

The performance of a PINN is crucially affected by the
underlying type of architecture used for the NN. In this section,
we describe four types of architectures commonly used in the
literature, see Table I for an overview.

i. The most common architecture used for a (physics-
informed) NN is a multilayer perceptron (MLP) [6]
consisting of neurons with nonlinear activation functions
that are structured in fully connected layers.

ii. To enhance the expressivity of MLPs, it has been pro-
posed in [7] to add residual connections to the architec-
ture. This is inspired by the so-called attention mech-
anism that has greatly improved NN performances [8]
and helps to efficiently capture interactions between input
coordinates. The resulting architecture is referred to as a
modified MLP (mMLP).

iii. A fundamentally new architecture is the Kolmogorov-
Arnold Network (KAN) [9]. Unlike MLPs, which learn
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TABLE I
OVERVIEW OF COMMON ARCHITECTURES IN PINNS. TRAINABLE PARTS ARE HIGHLIGHTED IN GREEN.

mMLP [7]

o ®®
@0@

Additional residual connections
inspired by attention mechanism

Generic neural network architecture

KAN [9] cKAN [10]

o or
@@

E— basis

® @

®®
N

Learnable activation functions via
B-spline basis representation

B-spline
basis

Chebyshev

Learnable activation functions via
Chebyshev polynomial basis

edge weights and use fixed activation functions, KANs
learn the activation functions themselves, typically using
a B-spline basis. KANs decompose the problem into 1D
functions, enabling interpretation of trained models — an
advantage over traditional MLP-based architectures.

iv. KAN architecture using an alternative basis consisting
of Chebyshev polynomials that lead to Chebyshev KANs
(cKANSs) [10].

Several works have compared the use of these different
types of architectures for solving PDEs [11], [12], but only
for benchmark problems that significantly differ in solution
properties and complexity from those encountered in TCAD-
relevant use cases. The present work closes this gap by com-
paring these architectures for the practically relevant TCAD
problem described in Section II, representative of real-world
challenges in semiconductor device design.

IV. IMPLEMENTATION AND TRAINING

To approximate the solution of the system from Sec-
tion II via SciML, the first step is to apply a suitable
non-dimensionalization to ensure a stable training behavior.
Concretely, the input variables in space and time as well as
all output dimensions have been non-dimensionalized to the
range [0, 1]. The non-dimensionalized PDEs are then evaluated
at 10000 randomly sampled collocation points, the boundary
and initial conditions at 2500 points each. The composite loss
function is the equally weighted sum of the L?-residuals of
these evaluations.

For MLPs and mMLPs, the tanh activation function has
been used and all combinations of {3,4,5,6} layers with
{64, 96,128} neurons per layer have been tested. For KANs
and cKAN:S, all combinations of {3, 4,5} layers with {32,64}
and {64,128} nodes per layer, respectively, have been ex-
amined. The training of MLPs, mMLPs, KANs, and cKANs
has been conducted for 50000, 30000, 10000, and 30000
Adam iterations, respectively, with learning rate decay (cosine
annealing) [13]. All these hyperparameters have been chosen
according to the values typically used in the literature and in
accordance with the available computational resources.

The implementation is based on the PyTorch frame-
work [14] and is available at [15]. The mMLP implementation

is based on [7], the KAN implementations are based on the
efficient implementation from [16]. The training was carried
out on a consumer GPU (GeForce RTX 2060 SUPER).

V. RESULTS

To assess the accuracy of the PINNs, we compare their
predictions to a reference solution that has been computed
numerically via the FDM. For each type of architecture, the
relative L2-error compared to the reference solution at the
annealing time ¢ = 1h (averaged over all concentrations) of
the most accurate PINN and its respective training time are
displayed in Table II; see [15] for the results of all PINNs.

TABLE II
MOST ACCURATE PINNS SETUPS FOR ALL FOUR TYPES OF
ARCHITECTURES FOR MODELING SILICIDATION.

Model H Relative L2-error | Training time
MLP (3 x 128) 4.4% 1h
mMLP (4 x 128) 3.2% 1.5h
KAN (4 x 32) 5.8% 3h
cKAN (5 x 128) 3.9% 8h

The best accuracy in our experiments is obtained by a
mMLP. This shows that the additional residual connections
in mMLPs indeed allow the NN to capture the silicidation
process more accurately compared to generic MLPs, which
are less accurate despite the use of more training iterations.
The best accuracy for the cKANs is worse than for mMLPs,
but slightly better than for MLPs. The KANs considered in
this study exhibit lower accuracy compared to the other types
of architectures. The predictions of the most accurate PINN
together with the reference solution at the annealing time
t = 1h are shown in Fig. 1.

It should be noted that the training times in Table II are
not directly comparable due to differing NN hyperparameters.
For example, the longer training time of cKAN versus KAN
is because a larger NN was trained for more iterations. For
networks of similar size, cKANs need fewer computational
resources per iteration than KANs. Generally, the training
times in Table II show that mMLPs are more computationally
expensive to train than MLPs, and KAN-based architectures
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Fig. 1. Predictions of the most accurate PINN compared to the reference
simulation based on the FDM.

require significantly more computation in training than MLP-
based ones. Despite the higher training cost of PINNs, a
key advantage is their fast evaluation compared to classical
simulations. For instance, the PROMIS solver [17] (using
FDM with adaptive time steps on a 2nm grid) needs a few
seconds per simulation on a single core, whereas evaluating
the PINNs from Table II on the same grid for 13 timesteps
(once every 5min over 1h annealing time) takes only a
few milliseconds on a standard laptop CPU. Hence, for the
present problem, PINNs offer evaluation speedups of about
three orders of magnitude over classical simulations.

VI. CONCLUSION AND OUTLOOK

We have demonstrated the applicability of SciML to accu-
rately model the TCAD relevant use case of Ni-SiC silici-
dation. Concretely, we have implemented and trained PINNs
solely based on the governing physical laws of the process,
without requiring measurement or simulation data. The focus
of this work has been to compare the performances of different
types of architectures for this task. The most accurate PINN
obtained here is based on an attention-inspired extension of
a generic MLP, which agrees with classical simulations up to
a relative L2-error of 3.2%. When comparing Fig. 1 with the
model’s calibration [5], it becomes evident that the PINN’s
accuracy is sufficient from an application’s perspective. This
demonstrates that the simulation of Ni-SiC systems is part of
a plethora of applications in which SciML enables an accurate
approximation of a process’ solution [18].

To further improve PINN accuracy, promising directions in-
clude using feature embeddings for high-frequency phenomena
and directly encoding initial as well as boundary conditions
into the model structure [19]. A key opportunity of SciML
is the drastically reduced evaluation time of trained models
compared to conventional solvers. While standard PINNs
still require costly retraining for each new configuration, this
limitation can be overcome by extending them to physics-
informed neural operators (PINOs) [20], which generalize
across different parameter sets or initial conditions. PINOs
can be evaluated rapidly for new scenarios without retraining,

making them particularly advantageous for optimization tasks
requiring many model evaluations.

Moreover, the composite loss function in PINN training can
be extended with data-driven loss terms, allowing models to
both satisfy physical laws and fit experimental or simulated
data. This enables simultaneous system solving and parame-
ter calibration based on measurements, which is particularly
valuable for real-world TCAD applications.

In summary, SciML approaches open new possibilities
for handling complex, coupled systems and for integrating
scientific models with experimental data. These methods pave
the way for scalable, data-integrated modeling of complex
material interactions in semiconductor technology. Future
work will focus on further advancing PINO architectures and
integrating measurement data for robust, efficient simulation
and optimization pipelines.
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