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Abstract—Demand for energy-efficient AI has driven sig-
nificant interest in Compute-In-Memory (CIM) architectures
based on memristor devices, which reduce energy consumption
and latency by minimizing data movement. However, practical
deployment remains limited by device variability. This work ex-
plores how such stochastic properties can be harnessed — rather
than suppressed — through Bayesian CIM, where memristors
naturally encode probability distributions for uncertainty-aware
inference. We review recent advances toward enabling on-chip
learning at the edge, including hybrid synapses that decouple
inference from learning. In addition, we examine algorithmic
frameworks such as meta-learning, which retains global training
in the cloud while supporting efficient edge adaptation. We also
discuss biologically inspired mechanisms to mitigate catastrophic
forgetting. Finally, we highlight the role of heterogeneous inte-
gration and 3D architectures as key enablers of future scalable,
neuromorphic systems.

Index Terms—Resistive Memories, Memristors, Compute-In-
Memory, Bayesian CIM, on-chip learning.

I. INTRODUCTION

The energy demands associated with training and deploying
artificial intelligence and machine learning (AI/ML) systems
are increasing at an unsustainable rate. Simultaneously, the
widespread deployment of portable sensory devices — and
the accompanying surge in data generation — poses serious
challenges in terms of memory density and power efficiency.
Conventional Al architectures are not designed to cope with
this scale and complexity, rendering the current trajectory
increasingly untenable.

These conventional processing systems typically rely on
high-density off-chip memory to store large neural network
models and require frequent memory access to perform vector-
matrix multiplication operations. Data movement — not com-
putation — dominates both energy consumption and latency.
For instance, transferring a 32-bit word from off-chip DRAM
can consume up to 300 times more energy than a 32-bit
floating-point multiplication [1], with access latencies ranging
from tens to hundreds of nanoseconds [2].

Neuromorphic computing and memristor technologies, such
as resistive RAM (RRAM), magnetic RAM (MRAM), phase-
change memory (PCM), and ferroelectric memories have
garnered significant interest as potential enablers of energy-
efficient Al [3]. In particular, memristor-based compute-in-
memory (CIM) architectures present a promising approach.
By integrating vector-matrix multiplication operations directly
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into memory arrays, these architectures reduce the need for
energy-intensive data movement. Most implementations em-
ploy crossbar arrays, where memristors at each cross-point
store synaptic weights as conductance values. Input vectors are
applied as voltages across the rows, and the resulting output
currents—governed by Ohm’s and Kirchhoff’s laws—naturally
implement the core operations of neural networks: vector-
matrix multiplication.

In conventional CPU/GPU architectures, loading and pro-
cessing a batch of inputs incurs a fixed energy cost, which
becomes more efficient on a per-input basis as the batch size
increases. However, this amortization is less effective in edge
computing scenarios, where batch sizes are typically small
due to latency constraints. In contrast, IMC systems rely on a
fixed physical array whose energy consumption per inference
is independent of the batch size. As a result, the energy
required to classify a single input remains nearly constant,
providing significant advantages in low-latency, low-power
edge applications that operate with small batch sizes.

Despite these advantages, practical deployment faces critical
challenges, including device variability, limited scalability, and
the absence of robust and efficient on-chip learning mech-
anisms. This paper explores emerging technologies, device
models, and algorithm-architecture co-design strategies aimed
at addressing these hurdles to enable scalable, energy-efficient
neuromorphic CIM systems.

II. BAYESIAN COMPUTE-IN-MEMORY

A fundamental limitation of analog compute-in-memory
(CIM) based on memristive devices is reduced computational
accuracy, primarily due to device variability, programming
non-uniformity, and read noise. These challenges stem from
the low precision of such devices: when used as multi-level
memories, memristors typically support only a limited number
of statistically distinguishable conductance levels [4], [5].

This inherent variability has catalyzed the development
of Bayesian compute-in-memory (Bayesian CIM) to imple-
ment in hardware Bayesian neural networks. Rather than
suppressing stochastic behavior, a Bayesian CIM leverages it
to represent and quantify model uncertainty. In this framework,
each network parameter — including weights and biases — is
modeled as a probability distribution, typically a normal dis-
tribution [6]. The intrinsic randomness of memristive devices
enables efficient sampling from these distributions. These
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Fig. 1. In a Bayesian neural network, each parameter is represented by a Gaussian distribution rather than a single scalar value. Due to intrinsic variability,

a population of nominally identical memristors can inherently encode such distributions. Crossbar arrays simultaneously perform vector-matrix multiplication

operations and draw weight samples.

samples are propagated through the network to form ensem-
bles of outputs, allowing predictions to be accompanied by
well-calibrated uncertainty estimates — an essential capability
for high-stakes applications such as medical diagnosis and
predictive maintenance.

The network topology in Bayesian neural networks mir-
rors that of conventional networks: inputs propagate through
successive fully connected, convolutional, or recurrent layers,
each followed by nonlinear activations. However, in Bayesian
CIM, each weight is sampled from its associated distribution
during inference.

Due to cycle-to-cycle variability, a population of nominally
identical memristors can inherently encode a probability dis-
tribution, making them well-suited for representing Bayesian
network parameters. Slight variations among devices naturally
form an ensemble that approximates a target probability den-
sity (Fig. 1). For example, a small group of devices (G, G?,
Gll), programmed under identical conditions, can collectively
realize a normal distribution with a defined mean (x) and
standard deviation (o). The programming conditions determine
both 1 and o of the resulting distribution. Crossbar arrays
can then perform the required vector-matrix multiplication
operations while simultaneously drawing weight samples in
the analog domain.

This approach has been experimentally demonstrated with
filamentary memristors [7], [8], where the stochastic nature
of filament formation leads to a normally distributed range of
conductance values after each programming event. Similarly,
phase-change memory (PCM) devices exhibit variability due
to the stochastic nucleation and growth of crystalline domains
during crystallization, resulting in unique microstructures (e.g.,
grain size, distribution, and orientation) with every program-
ming cycle [8].

Read-to-read noise in filamentary memristors — where
repeated reads of the same cell produce independent samples
from a narrow distribution centered on the stored value — has
also been proposed as a mechanism for Bayesian parameter
sampling [9]. An analogous effect occurs in devices based on
two-dimensional (2D) materials, where fully exposed channels
are especially sensitive to surface traps, leading to distinctive
read noise profiles [10].

For practical Bayesian CIM systems, it is crucial to operate

over sufficiently large sampling domains where i and o can be
independently controlled. A common strategy to decorrelate
these parameters involves subtracting conductances obtained
from two separate sampling operations [8], [10]. An alternative
approach is to store p and o in separate arrays and use them
jointly to generate samples [11].

Flagship experimental demonstrations of Bayesian CIM
using emerging nanotechnologies have illustrated the key
advantages of Bayesian inference. In particular, the variance
of the predictive distribution offers a direct measure of model
confidence, enabling out-of-distribution detection [8]. Fur-
thermore, Bayesian methods maintain consistent and reliable
performance even when inputs are corrupted by noise [11].

Finally, not all forms of device randomness are well-suited
for Bayesian CIM. Predictable and well-characterized sources
of variability — such as device-to-device variation and read-
to-read noise — can be harnessed effectively. In contrast,
uncontrolled phenomena like temporal drift can degrade distri-
bution fidelity and compromise the reliability of probabilistic
computation. In this context, accurate physical models that
capture and differentiate between various sources of variability
are essential for guiding device design and ensuring robust
system behavior.

III. TOWARD ON-CHIP LEARNING

Natural organisms do not rely on hardwired circuits for
every possible action in every possible environment; instead,
they continuously learn new tasks to adapt to changing con-
ditions. Similarly, on-chip learning is essential for adapting to
data shifts caused by factors such as sensory or environmental
noise, analog hardware degradation, or for performing tasks
not addressed during offline training. However, enabling learn-
ing with memristive devices presents significant challenges
from both hardware and algorithmic perspectives.

From a hardware standpoint, no existing memory tech-
nology simultaneously meets the conflicting requirements of
inference and training. Inference demands high read endurance
and noise robustness to reliably access pre-stored param-
eters, whereas training requires high write endurance, low
programming energy, and fast switching speeds to support
frequent, high-precision parameter updates. To address this
trade-off, several hybrid memory architectures have been pro-
posed (Fig. 2). These approaches combine memristors—used
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Fig. 2. High-level overview of off-chip and on-chip training procedures. On-chip learning requires a hybrid synaptic architecture combining two device types:
one with high write endurance and low programming energy for training, and another with non-destructive readout and virtually infinite read endurance for
inference. A unified BEOL-integrated metal-ferroelectric—-metal (MFM) stack can function as either a ferroelectric capacitor for training or, after a forming

operation, as a memristor for inference.

primarily for inference—with memory technologies better
suited for training, such as SRAM [12], ferroelectric memories
[13], [14], or gain-cell-based technologies [15].

From an algorithmic perspective, several challenges remain.
First, traditional learning algorithms used for off-chip training
offload the computational burden to the cloud, reducing on-
device complexity and allowing the costly training process to
be performed once and reused across multiple users. However,
this centralized approach limits adaptability and raises con-
cerns about data confidentiality, as both user data and model
parameters must be transmitted and processed externally. A
promising alternative is meta-learning — specifically, Model-
Agnostic Meta-Learning (MAML) — which enables models to
be pre-trained off-chip across a diverse set of tasks (learning to
learn). This approach allows for rapid adaptation to new tasks
on-chip using only a few data samples and energy-efficient
weight updates [16]. Notably, MAML has been successfully
implemented using both filamentary memristors [17] and
phase-change memory (PCM) devices [18], [19].

Another major challenge is catastrophic forgetting, a phe-
nomenon in which artificial neural networks lose previously
acquired knowledge when learning new tasks — a limitation
that contrasts sharply with the stability of biological learning.
The human brain is believed to overcome this issue through
synaptic metaplasticity, where synapses dynamically adjust
their learning rates based on the importance of prior tasks
[20]. This biological principle has inspired hardware-friendly
solutions: recent studies have demonstrated that metaplasticity
can reduce catastrophic forgetting in binarized and quantized
neural networks by using memristors to store the quantized
weights, while a separate digital memory holds the correspond-
ing hidden weights as metaplastic variables [21], [22]. These
hidden weights represent task importance and guide future
updates.

Bayesian learning is grounded in the principles of Bayesian
inference, offering multiple ways to incorporate new training
data and update model parameters. Given that nanodevice-
based hardware is well-suited for Bayesian inference, it also
shows strong potential for enabling hardware-native updates
of parameter distributions for on-chip learning. One promis-
ing approach is to implement Bayesian learning directly in
hardware by embedding the stochastic search steps of Markov

Chain Monte Carlo (MCMC) methods. Memristor arrays have
been used in this context to learn to detect cancer in mam-
mography images with classification accuracy comparable to
that of software-based methods [7]. This demonstrates that
Bayesian learning is particularly well-suited for efficient, on-
chip learning. Moreover, recent work has shown that synaptic
uncertainty, stored by exploiting device-level variability, can
be harnessed to enable continual learning, allowing systems
to adapt to new tasks without catastrophic forgetting [23].

IV. FUTURE: HETEROGENEOUS SYSTEMS

Progress in memristor-based neuromorphic architectures
requires moving beyond traditional CMOS scaling, driving
innovation in materials, device technologies, and integration
strategies. Rather than relying on a uniform technology, future
systems will embrace heterogeneous devices, each optimized
for specific computational roles. This paradigm shift demands
a redefinition of process technologies, with a focus on 3D inte-
gration — including monolithic 3D integration, where memory
layers are sequentially fabricated on a single substrate, and
advanced 2.5D and 3D packaging, which combine multiple
chips into a unified package [24]. These approaches enable
increased on-chip memory density, allowing for the local
storage of larger models — a critical requirement for Bayesian
models, which are more memory-intensive due to the need to
sample and store multiple conductance values per parameter.
They also allow the co-integration of diverse memory types
to support on-chip learning. In addition, they facilitate the
heterogeneous integration of function-specific modules, each
fabricated using the most appropriate process node and as-
sembled either side-by-side on a shared interposer or stacked
vertically. This architectural strategy mimics the small-world
connectivity found in biological brains (see Fig. 3), laying
the groundwork for ultra-low-power, bio-inspired computing
systems.

For example, the brain of an insect contains specialized
regions for parallel signal processing, real-time learning, and
multimodal sensory integration. These regions operate us-
ing diverse neural and synaptic types and multiple coding
strategies — an inherent heterogeneity absent in conventional
computing architectures. Emulating this in silicon entails the
co-integration of multiple sensory and compute chiplets, each
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Fig. 3. Future neuromorphic systems, inspired by the modular organization of insect brains, will consist of a heterogeneous collection of chips—each optimized
for tasks such as sensing, learning, and sensor fusion—fabricated with different technologies and interconnected through advanced 2.5D and 3D packaging.
Increased on-chip memory density will be further enabled by monolithic 3D integration at the single-chip level.

leveraging distinct device technologies, coding schemes, and
computational models. In this context, spiking neural networks
are well suited for low-latency processing of real-time data
from event-based sensors, while Bayesian models provide a
principled framework for sensor fusion across heterogeneous
and noisy input streams. To support personalization and real-
time adaptability, an on-chip learning module becomes an
essential component.

V. CONCLUSION

Harnessing the intrinsic variability of resistive memories
through Bayesian Compute In Memory enables uncertainty
aware, trustworthy inference at low energy. Coupled with
hybrid synapse architectures, new learning algorithms like
meta learning, and metaplasticity will enable on-chip edge
learning. Looking ahead, heterogeneous 3D integration and
modular chiplets-based designs—mirroring biological special-
ization — provide the scalable, flexible foundation for future
neuromorphic edge intelligence.
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