
Tunneling quantum correction potential model for

drift-diffusion simulations of Schottky contact resistance

A. -T. Pham a, M. A. Pourghaderi b, S. Jin a, S. Song b, Y. Park b, U. Kwon b, W. Choi a, D. S. Kim b

a TCAD lab, Samsung Semiconductor Inc., San Jose, CA, USA.
b CSE team, Innovation center, Samsung Electronics, Korea.

Abstract— A new approach based on tunneling quantum cor-
rection potential is proposed for Schottky contact resistance
simulation. The new model relies on a quantum correction
potential retaining the conduction band edge near the Schottky
interface while avoiding non-local mesh and Wentzel-Kramers-
Brillouin computation for direct tunneling treatment. The new
model is implemented into the drift-diffusion solver. The accuracy
of new model is much higher than the accuracy of Schottky
distributed resistance vs non-local tunneling model for a wide
range of Si doping concentrations. For typical IV characteristic
simulations, the new method is faster than the non-local tunneling
model method by up to 4 times.

I. INTRODUCTION

The performance of advanced logic cells is largely deter-

mined by parasitic components. Despite the complex process

and design solutions to minimize their impact, some of the

parasitic components remain fixed by intrinsic material prop-

erties. A prime example of this category is Schottky contact

resistance which naturally occurs at any metal-semiconductor

interface. For example, in the case of titanium silicide, the

n-type Schottky barrier height (SBH) is broadly reported

to be around 0.5 eV, decided by the chemistry of silicon,

titanium silicide, and their interface. In practice, electrons from

the highly doped silicon region must tunnel through such a

high SBH to reach to the bulk of metal contact. To model

Schottky contact within the drift-diffusion (DD) framework,

very often, the non-local tunneling (NLT) method based on

the Wentzel-Kramers-Brillouin (WKB) integration approach

is used [1]. The NLT method involves (i) the non-local mesh

establishment aligned with a predefined tunneling path, (ii) the

WKB approximation for the calculation of tunneling proba-

bility along the tunneling path. Such an approach involves

many computational steps, resulting in a long turnaround time

(TAT). On top of that, the non-local treatment can degrade the

coupling of the system matrix, leading to slow convergence

and numerical instability of the DD solver.

An alternative method has been proposed based on Schottky

distributed resistance (SDR) [2]. However, the SDR method

flattens the conduction band edge (CBE), altering the electro-

statics near the Schottky contact. This simplification inhibits

the formation of depletion regions and correct potential profile

in scaled devices.

In this work, a new approach based on tunneling quantum

correction potential (TVqc) is proposed, through which the

precise CBE profile near Schottky contact is retained. Relying

on a quantum correction potential, the TVqc method is fully

local. Therefore, nonlocal mesh and WKB computation are

avoided. In this way, the TVqc model offers much better

numeric efficiency than NLT, while preserving the same level

of accuracy.

In the next section, the tunneling quantum correction poten-

tial model is described. The calibration and simulation results

for 1D and 2D devices are shown thereafter. And finally, the

conclusion is drawn.

II. TUNNELING QUANTUM CORRECTION POTENTIAL

MODEL

Due to the natural band offset and resulting barrier across

the contact, the certain extent of semiconductor region near

the interface gets depleted from the carriers. In conventional

DD framework, such a carrier profile results in substantial

resistance. To correct this DD artifact, the current should

be boosted with controlled adjustment of local density. In

this light, the TVqc model employs a quantum correction

potential which boosts carrier density at the Schottky contact.

Using TVqc model, the profile of potential barrier is kept

precise while tunneling quantum correction pumps controlled

amount of carrier toward the Schottky interface and mimics the

tunneling current. The tunneling quantum correction potential

is given by:

Λtunneling(~r) = −ΦB,tunneling · exp

(

−
|~r − ~r0|

L(N(~r))

)

(1)

where ΦB,tunneling is effective tunneling SBH. For a local

position vector ~r in the device domain, ~r0 is a position vector

on the Schottky interface, which is nearest to ~r. L(N) is

doping dependent decay length, given by:

L(N) =
L0

1 + exp[α(x − x1)]
+

L∞

1 + exp[−α(x − x1)]
(2)

x = log10

N

N0

, x1 = log10

N1

N0

, N0 = 1cm−3 (3)

Here, L0 and L∞ are decay lengths at vanishing and infinite

doping, respectively. N is absolute doping level at position

~r. N1 is transitional doping concentration. ΦB,tunneling, N1,

and α are model parameters. To consider the orientation

dependence of contact resistivity, orientation dependence of

ΦB,tunneling and α is enabled.

To enable the TVqc model, Λtunneling(~r) given by (1) is

directly added to the conventional quantum correction term of
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the density gradient model [3]. In this way, the self-consistent

solution of Poisson, continuity, and density gradient equations

produces the desired tunneling component.

III. RESULTS

For calibration, the model parameters of TVqc, NLT, and

SDR models are adjusted to match the contact resistance

of 1D metal/Si structure vs DFT-NEGF reference data. The

DFT reference data is prepared for (100) and (111) silicon

orientation in contact with amorphous titanium silicide, where

n-SBH of samples reads as 0.5 and 0.57eV, respectively. Fig.

1 shows that TVqc, NLT, and SDR models match well the

DFT-NEGF results for contact resistance vs n-type doping

concentration ranging from 3e19 to 3e21 cm−3 for (100) and

(111) metal/Si interfaces.
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Fig. 1. Contact resistance vs n-type doping concentration calculated by TVqc,
NLT, and SDR models vs DFT-NEGF method for (100) and (111) metal/Si
interfaces.

Fig. 2 (top) depicts the TVqc model results for CBE,

tunneling quantum correction potential (Λtunneling(x)), and

quantum potential in a Schottky contact with ND = 1.4e20

cm−3 and (100) metal/Si interface. The CBE resulting from

TVqc model agrees well with the NLT model result.

Note that, in the TVqc model, the Λtunneling(x) is in

opposite sign vs CBE (Fig. 2 (top)), in order to boost the

carrier density near the Schottky interface (Fig. 2 (top)).

Excluding Λtunneling(x) from the carrier density calculation,

electron density from the TVqc model (shown as eDensity0 in

Fig. 2 (bottom)) are in good agreement with the NLT model

result.

2D dog-bone nFETs (Tch=5nm, Lch=15nm, Tsd=15nm,

Lsd=15nm, Nch=1e15 cm−3, Nsd=5e20 cm−3, Nct=5e19-

5e20 cm−3, (001) surface/<110> channel) with Schottky

S&D contacts (Fig. 3) is simulated using DD approach with

NLT, TVqc, and SDR models, which are well calibrated from

the previous step. S&D doping concentration (Nsd) is kept as

high as 5e20 cm−3 in order to reduce the access resistance.

Within a 1nm thicknes layer around S&D contacts, the doping

Fig. 2. Conduction band edge (CBE), tunneling quantum correction potential
(Λtunneling(x)), quantum potential (top), electron density (eDensity) and

doping profile (bottom) in a Schottky contact with ND = 1.4e20 cm−3

and (100) metal/Si interface.

Fig. 3. Doping profile of 2D dog-bone nFETs.

concentration is overidden with Nct=5e19-5e20 cm−3, for

investigating the contact resistance effects.

For TVqc model, Fig. 4 shows tunneling quantum correction

potential (top) and quantum potential (bottom) profiles for

Nct=5e19 cm−3 with VDS = 50mV, VGS = 0.8V. Tunneling

quantum correction potential exponently decays from the S&D

contacts and vanishes inside the channel. Therefore, this pat-

tern is reflected in total quantum potential around the contact

region. Inside the channel, however, total quantum potential

retains high value in order to take care of electron quantum

confinement effects.

For VDS = 0.7V, VGS = 0.8V, the doping profile (a1-3),

CBE (b1-3), and electron quasi-Fermi energy (c1-3) resulting
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Fig. 4. Tunneling quantum correction potential (top) and quantum potential
(bottom) profiles in TVqc model for Nct=5e19 cm−3. VDS = 50mV, VGS =
0.8V.

from NLT, TVqc, and SDR models are shown in Fig. 6 and 5

for Nct=5e19 and Nct=3e20 cm−3, respectively. While NLT

and TVqc models give similar CBE as well as electron quasi-

Fermi energy, the results from the SDR model near Schottky

contact are remarkably different for Nct as low as 5e19 cm−3.

Particularly in scaled devices, such details are crucial for

accurate electrostatic and device performance analysis.

Fig. 5. Doping profile (a1, a2, a3), conduction band edge (b1, b2, b3),
electron quasi-Fermi energy (c1, c2, c3) resulting from NLT (a1, b1, c1),
TVqc (a2, b2, c2), and SDR (a3, b3, c3) models. VDS = 0.7V, VGS = 0.8V.
Nct=3e20 cm−3.

Next, the impact of model on I − V characteristics is

explored. For a high level of Nct=3e20 cm−3, ID − VGS

characteristics (shown in Fig. 7) resulting from NLT, TVqc,

and SDR models are in excellent agreement for both VDS =
50mV and VDS = 0.7V biases.

When Nct reduces to 5e19 cm−3, TVqc model still gives

good match of ID − VGS characteristics (shown in Fig. 8)

resulting from NLT model for both VDS = 50mV and VDS =
0.7V biases. However, SDR fails to produce reference results

in low and high bias condition. With ideal Ohmic contact,

ID is up to 42% higher than the ID with Schottky contact,

emphasizing the importance of parasitic contact resistance.

In summary, as depicted in Fig. 9, ID −VDS characteristics

resulting from NLT, TVqc, SDR models for VGS = 0.8V are in

excellent agreement for Nct=3e20 cm−3 (top). For Nct=5e19

Fig. 6. Doping profile (a1, a2, a3), conduction band edge (b1, b2, b3),
electron quasi-Fermi energy (c1, c2, c3) resulting from NLT (a1, b1, c1),
TVqc (a2, b2, c2), and SDR (a3, b3, c3) models. VDS = 0.7V, VGS = 0.8V.
Nct=5e19 cm−3.

Fig. 7. ID − VGS characteristics with Schottky contact NLT, TVqc, SDR
models vs ID − VGS characteristics with ideal Ohmic contact for VDS =
50mV (top) and VDS = 0.7V (bottom). Nct=3e20 cm−3.

cm−3 (bottom), the error of TVqc vs NLT model is small

(< 10%) while the error of SDR vs NLT model is much bigger,

up to 500%.

Fig. 10 shows ID vs Nct characteristics for VGS = 0.8V

with Schottky contact NLT, TVqc, SDR models vs ID with

ideal Ohmic contact for VDS = 50mV and VDS = 0.7V. For

a wide range of Nct, TVqc model results are good agreement

with NLT model. However, SDR model can only retain decent
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Fig. 8. ID − VGS characteristics with Schottky contact NLT, TVqc, SDR
models vs ID − VGS characteristics with ideal Ohmic contact for VDS =
50mV (top) and VDS = 0.7V (bottom). Nct=5e19 cm−3.

Fig. 9. ID − VDS characteristics with Schottky contact NLT, TVqc, SDR
models vs ID − VDS characteristics with ideal Ohmic contact for Nct=3e20
cm−3 (top) and Nct=5e19 cm−3 (bottom). VGS = 0.8V.

Fig. 10. ID vs Nct characteristics with Schottky contact NLT, TVqc, SDR
models vs ID with ideal Ohmic contact for VDS = 50mV and VDS = 0.7V.
VGS = 0.8V.

match against NLT results for Nct higher than 1e20 cm−3.

Below this limit, the error significantly increases.

Turn around time (TAT)-wise, TVqc matches the perfor-

mance of SDR model. Compared to NLT, TVqc is faster by

about three (for VDS = 0.7V) to four times (for VDS = 50mV)

thanks to the fast convergence and numerical stability of the

TVqc model implemented in the DD solver.

IV. CONCLUSION

A new approach based on tunneling quantum correction

potential is proposed for Schottky contact resistance simula-

tion. The TVqc model relies on a quantum correction potential

retaining the CBE near the Schottky interface while avoiding

non-local mesh and WKB computation for direct tunneling

treatment. The TVqc model can be implemented into the DD

solver in a straightforward manner. The error of TVqc is shown

to be much smaller than the error of SDR vs NLT model for a

wide range of Si doping concentrations, specifically <1e20

cm−3. For typical IV characteristic simulations, the TVqc

method is faster than the NLT method by 3∼4 times.
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