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Abstract—In this study, we use Non-Equilibrium Green’s 
Function (NEGF) based quantum transport simulations to 
investigate metal-Transition Metal Dichalcogenide (TMD) top 
contacted geometries. Using MoS2 as an example TMD, we explore 
the impact of the surrounding dielectric environment and spatially 
non-uniform doping in MoS2 on contact resistance.  We find that 
a low permittivity top dielectric is crucial in reducing the tunneling 
width for electrons and thus contact resistance. We also find that 
heavily doping the MoS2 monolayer underneath the metal has an 
insignificant effect in terms of reducing the tunneling width and 
contact resistance whereas the doping in the channel region is 
critical.  
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I. INTRODUCTION 
Transition-Metal Dichalcogenides (TMDs) are atomically 

flat, layered compounds with a chemical formula of MX2 (M = 
Mo, W or Nb and X = S, Se or Te) [1]. The presence of a 
bandgap �𝐸𝐸g� in several TMDs [2], lack of dangling bonds that 
give rise to interface states in the bandgap, phonon-limited 
electron mobility of ~183 cm2V−1s−1 [3] and superior 
electrostatic control due to the large surface-to-volume ratio, 
make TMDs suitable as the channel material in the next 
generation transistors [4]. However, metal contacts to the 
TMDs, an integral part of any transistor architecture, are 
characterized by strong Fermi level pinning (FLP) with large 
contact resistance (𝑅𝑅C) and poor ON current [5]. Even with 
ultra-clean interfaces, the penetration of metal induced gap 
states (MIGS) into the TMD bandgap results in the Fermi level 
being pinned to the branch-point energy [6].  

An interesting approach reported recently is the use of semi-
metals such as Bismuth (Bi), Antimony (Sb) and Tin (Sn) to 
contact the TMD, utilizing the low density of states at the Fermi 
level of semi-metals to de-pin the Fermi level [7-9]. 
Alternatively, others have shown that MIGS can also be 
reduced by introducing buffer layers such as h-BN between the 
metal and the TMD [10]. However, the relatively low melting 
points of materials such as Bi and Sn [11] and the inherent 
complexity in fabrication introduced by buffer layers, make 
these approaches incompatible with the current complementary 
metal-oxide semiconductor (CMOS) process flow.  

In this work, we use our in-house transport solver [12, 13] 
to model metal-monolayer MoS2 (1L-MoS2) top contacted 
geometry by solving the single particle, effective mass 
Schrodinger equation under the quantum transmitting boundary 
method (QTBM) formalism [14]. We investigate the effect of 
the surrounding dielectric environment, spatially non-uniform 
doping in the 1L-MoS2, while accounting for the image force 
barrier lowering (IFBL) effect. This paper is organized as 
follows: We first describe the methodology used in this work to 
calculate transmission probabilities and 𝑅𝑅C. Next, we present 
our results by comparing the potential profiles, current density 
cutlines and electric field profiles for different dielectric setups 
and doping profiles. Lastly, we draw conclusions identifying 
the best dielectric setup and doping profile to reduce 𝑅𝑅C. 

II. METHODOLOGY 
Our approach to calculate RC can be broadly divided into 

three steps, as shown in Fig. 1a. In the first step, the top 
contacted heterostructure is created starting from a unit cell of 
dimensions 𝐿𝐿𝑥𝑥 = 2.86  Å, 𝐿𝐿𝑦𝑦 = 4.96 Å , and 𝐿𝐿𝑧𝑧 = 62.3 Å , 
consisting of a monolayer of MoS2 and two metal layers (shown 
in red), separated by an interlayer distance (di) of 2.5 Å  as 
depicted in Fig. 1b. In order to prevent any unphysical coupling 
between the unit cell and its neighboring periodic images along 
the z-direction, we add 24.3 Å of vacuum above the top metal 
layer and 28 Å of vacuum below the 1L-MoS2. A crucial step 
here is to calculate the eigenstates of the unit cell 𝑢𝑢𝑛𝑛𝑛𝑛(𝒓𝒓) , 
necessary to construct the Bloch basis. The unit cell is repeated 
periodically as discrete finite element (FE) blocks along the 
transport direction, 𝑥𝑥, up to a desired length (𝐿𝐿dev). To create 
the top contact heterostructure with an overlap length 𝐿𝐿ov, some 
metal atoms above the 1L-MoS2 need to be eliminated. This is 
accomplished by summing up the potential profiles of all the 
metal atoms to be removed (𝑉𝑉rem(𝒓𝒓)), and applying the negative 
of this potential, i.e., −𝑉𝑉rem(𝒓𝒓) to the entire simulation domain, 
as shown in Fig. 1c.  

In terms of materials modeling, the metal atoms in the unit 
cell are modeled using atomistic empirical pseudopotentials 
with an energy cut-off of 250 eV. The three atoms in the 1L-
MoS2 however, are modeled in a continuum description using 
the local potential of 1L-MoS2 extracted from the Vienna Ab-
initio Simulation Package (VASP) [15]. The three dimensional 
local potential is 𝑥𝑥 − 𝑦𝑦 averaged, yielding a potential that varies 
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only along the 𝑧𝑧-direction. Depending on the electron affinity of 
the TMD (𝜒𝜒TMD), the averaged local potential is truncated at 
𝐸𝐸truncloc . This is determined iteratively, by comparing the electron 
affinity obtained from the band structure of the rightmost finite 
element block, consisting of only the TMD, and the 
experimental electron affinity of the free standing TMD. For the 
case of 1L-MoS2 with 𝜒𝜒MoS2 = 4.27 eV  [2], 𝐸𝐸truncloc =
−5.13 eV yields the correct affinity of the 1L-MoS2.  

In the second step of our methodology, we solve the Poisson 
equation given by  

    ∇ ⋅ �𝜖𝜖(𝒓𝒓) ⋅ ∇𝑉𝑉(𝒓𝒓)� = 𝜌𝜌free(𝒓𝒓,𝑉𝑉) + 𝜌𝜌doping(𝒓𝒓),         (1) 

where 𝑉𝑉(𝒓𝒓) is the Hartree potential, 𝜌𝜌free(𝒓𝒓,𝑉𝑉) is the electron 
charge density, 𝜌𝜌doping(𝒓𝒓) is the non-electrostatic doping and 
𝜖𝜖(𝒓𝒓) is the relative permittivity tensor. For the 1L-MoS2, the in-
and-out-of-plane dielectric constants are taken from [16], while 
the permittivities for the top and the bottom dielectrics are taken 
from [17]. The electron charge density in the metal �𝜌𝜌freemet(𝒓𝒓)� 
and the 1L-MoS2 �𝜌𝜌free

MoS2� are modeled semiclassically as  

            𝜌𝜌freemet(𝒓𝒓) = 𝐷𝐷𝐷𝐷𝑆𝑆met × (𝑞𝑞𝑞𝑞(𝒓𝒓)− 𝜙𝜙met)                       (2) 

and       𝜌𝜌free
MoS2 = 2𝑚𝑚∗𝑘𝑘B𝑇𝑇

𝑡𝑡2D𝜋𝜋ℏ2
ln�1 + 𝑒𝑒

−�
𝑞𝑞𝑞𝑞(𝒓𝒓)−𝜒𝜒MoS2−𝜇𝜇R

𝑘𝑘B𝑇𝑇
�
�,             (3) 

where 𝐷𝐷𝐷𝐷𝑆𝑆met  is the density of states of bulk metal at the Fermi 
level, 𝑞𝑞 is the elementary charge, 𝑘𝑘B is the Boltzmann constant, 
T is the temperature, 𝜇𝜇R is the chemical potential of the right 
reservoir set to -0.1 eV, ℏ is the reduced Planck’s constant, 
𝑚𝑚∗ = �𝑚𝑚𝑥𝑥𝑥𝑥𝑚𝑚𝑦𝑦𝑦𝑦  is the electron effective mass and 𝑡𝑡2D is the 
thickness of the 1L-MoS2 at 6.12 Å [17]. Neumann boundary 
conditions are applied at all the boundaries, and (1) is solved on 

a FE mesh using the algebraic multigrid method. The self-
consistent potential from the Poisson equation is added to the 
IFBL potential, calculated separately using the analytical 
expression provided in [18], and the conduction band diagrams 
are extracted as shown in Fig. 1e. The combined potential is 
used in constructing the Hamiltonian matrix ℋ in the transport 
kernel described below.  

In the last step, we solve the device level Schrödinger 
equation under the QTBM formalism. Firstly, the full device 
wavefunction Ψ𝑖𝑖𝑖𝑖𝑖𝑖(𝒓𝒓) is expanded in terms of the eigenstates 
of the unit cell and the FE shape functions 𝑓𝑓𝑖𝑖(𝒓𝒓) as 

      Ψ𝑖𝑖𝑖𝑖𝑖𝑖(𝒓𝒓) = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖(𝒓𝒓)𝑢𝑢𝑛𝑛𝑛𝑛(𝒓𝒓)𝑒𝑒i𝑘𝑘(𝑥𝑥−𝑥𝑥𝑖𝑖)
𝑖𝑖𝑖𝑖𝑖𝑖 ,               (4) 

where 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖  are the expansion coefficients to be evaluated. The 
device level Schrödinger equation is converted into the weak 
variational form using Ψ𝑖𝑖𝑖𝑖𝑖𝑖

∗ (𝒓𝒓) as the FE test functions, from 
which ℋ is constructed. Assuming open boundary conditions, 
the collection of states at an energy 𝐸𝐸 to be injected into the 
simulation domain is obtained from the complex bandstructure 
of the left and the right leads, which are extensions of the first 
and the last FE blocks. The resulting matrix equation is 
                             [ℋ−𝐸𝐸M]𝐜𝐜 = B(𝐸𝐸),                                   (5) 
where B is the source matrix, with the columns describing the 
states of energy 𝐸𝐸  being injected, M  is the overlap matrix 
resulting from the FE discretization and 𝐜𝐜  is the expansion 
coefficients to be calculated. Equation (5) is solved for a 
collection of energies 𝐸𝐸, and the real space wavefunctions are 
calculated from 𝐜𝐜  using (4), from which the transmission 
coefficients T(𝐸𝐸) are evaluated. The current through the contact 
is calculated as 

       𝐼𝐼 = 𝑞𝑞
𝜋𝜋ℏ ∫d𝑘𝑘𝑦𝑦 ∫d𝐸𝐸 𝑇𝑇�𝐸𝐸,𝑘𝑘𝑦𝑦��𝑓𝑓L(𝐸𝐸,𝜇𝜇L) − 𝑓𝑓R(𝐸𝐸, 𝜇𝜇R)�,    (6) 

Fig. 1 (a) Flow chart of our simulation methodology consisting of three steps. 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝒓𝒓) is calculated analytically and the combined potential 
𝑉𝑉(𝒓𝒓) + 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝒓𝒓) is given as input to the transport kernel. (b) Cartoon of the unit cell used in our calculations, where the red, blue and yellow 
circles indicate the metal, sulfur (S) and molybdenum (Mo) atoms respectively. (c) Removal potential 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟(𝒓𝒓) is added to the simulation domain 
to eliminate some atoms above the 1L-MoS2. (d) Schematic of the top contact heterostructure used in our simulations. (e) An example band-
diagram depicting the definitions of the Schottky barrier height (𝜙𝜙𝐵𝐵) and the tunneling width (TW). 

(c)
(b)(a)

TW

(e)(d)
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where 𝑓𝑓L(R)  and 𝜇𝜇L(R) are the Fermi-Dirac distribution and the 
chemical potential of the left (right) lead. 𝑅𝑅C is calculated using 
the Ohm’s law as 𝑅𝑅C = 𝑉𝑉bias

𝐼𝐼
, where 𝑉𝑉bias is the bias of 0.1 V (or 

-0.1 eV) applied to the right lead. 

III. RESULTS 

A. Effect of the surrounding dielectric 
In Fig. 2a we compare the conduction band diagrams as a 

function of four choices of the top dielectric. The bottom 
dielectric is taken to be SiO2, the 1L-MoS2 is uniformly n-doped 
to 𝑁𝑁𝑠𝑠 = 5 × 1012cm−2  and the workfunction of the metal 
(𝜙𝜙met) is taken to be 5.0 eV. As the relative permittivity of the 
top dielectric is reduced from HfO2 to Air, we see that the TW 
reduces gradually. We also see that the barrier lowering effect 
is particularly significant when considering low-𝜅𝜅 dielectrics, 
as the barrier lowering is inversely proportional to the 
permittivity of the surrounding dielectric.  

Fig. 2b compares the color plots of the magnitude of the 
electric field inside the simulation domain between the top 
Air/bottom SiO2 and top HfO2/bottom SiO2 dielectric setups. 
The electric field in the region next to the right edge of the metal 
is higher in the top Air/bottom SiO2 compared to the top 
HfO2/bottom SiO2 setup. Since a high-𝜅𝜅 dielectric such as HfO2 
is more polarizable, the electric field from the metal is greatly 
screened, reducing the strength of the net electric field. A lower 
net electric field then translates to a larger TW and high 𝑅𝑅C.  

In Fig. 2c we show the cutlines of the magnitude of current 
density along the length of the 1L-MoS2 for the four dielectric 
setups. The current density inside the monolayer increases as 
the permittivity of the top dielectric is reduced, with ~5 orders 
of magnitude improvement in the current density from top 
HfO2/bottom SiO2 to top Air/bottom SiO2 dielectric setups. It is 
also interesting to note that the current density in the portion of 
the 1L-MoS2 underneath the contacting metal, i.e., from 0 nm 
to 3 nm, is nearly 2 orders of magnitude lower than the rest of 
the 1L-MoS2, since barrier height seen by the electrons moving 
from the metal into the 1L-MoS2 is the lowest at the right edge 
of the metal. Therefore, using a low-𝜅𝜅 top dielectric can greatly 
improve 𝑅𝑅C at the metal-MoS2 interface by lowering the TW 
and increasing the contribution of the tunneling current. 

B. Effect of non-uniform doping 
In Fig. 3 we explore the effect of spatially non-uniform 

doping in the 1L-MoS2. The monolayer is divided into the 
overlap and the channel regions, depicted as blue and green 
rectangles in the inset of Fig. 3a. Here we plot 𝑅𝑅C as a function 
of the doping in the channel region �𝑁𝑁sch�  for five different 
values of the overlap doping (𝑁𝑁sov). We see that 𝑅𝑅C decreases 
by ~7 orders of magnitude as 𝑁𝑁sch  is increased from 1 ×
1012 cm−2  to 1 × 1013 cm−2 . The same increase in 𝑁𝑁sov 
however has an insignificant effect in reducing 𝑅𝑅C, for any given 
choice of 𝑁𝑁sch. This is in sharp contrast to the expectation that 
heavily doping the semiconductor close to the metal improves 
𝑅𝑅C by reducing TW.  

Fig. 3b shows a 3D color plot of the calculated TWs as a 
function of 𝑁𝑁sch and 𝑁𝑁sov. We see that increasing 𝑁𝑁sch by one 
order of magnitude results in ~6x reduction in TW, while the 
same increase in 𝑁𝑁sov has virtually no effect in terms of reducing 
TW. This is consistent with the trends in 𝑅𝑅C observed in Fig. 3a. 

Fig. 3c provides an explanation by comparing the band-
diagrams for four doping profiles in the 1L-MoS2. As expected, 
the TW is the largest for case where the monolayer is undoped 
(solid red). As 𝑁𝑁sov is increased to 1 × 1013cm−2 with 𝑁𝑁sch =
0 cm−2 (dotted red), we do not see a significant reduction in 
TW. In contrast, if  𝑁𝑁sch  is increased to 1 × 1013cm−2  with 
𝑁𝑁sov = 0 cm−2 (dotted green), we see a drastic reduction TW. 
Further increase in doping in the overlap region has an 
insignificant effect in reducing 𝑅𝑅C  (solid green). Therefore, 
doping level in the overlap region has an insignificant effect in 
reducing 𝑅𝑅C, while doping the channel region heavily reduces 
the TW and therefore 𝑅𝑅C . This conclusion is not entirely 
surprising considering the thickness of the 1L-MoS2. Since the 
monolayer is merely 6.12 Å thick, the region underneath the 
metal remains depleted in spite of heavy doping. A similar 
conclusion has been reached in the work of Arutchelvan et al. 
[19] using a semiclassical TCAD based study on transport 
mechanisms in metal-MoS2 contacts.  

CONCLUSIONS 
Quantum transport simulations are performed on top 

contacted 1L-MoS2 to investigate the impact of surrounding 

Fig. 2 Effect of the surrounding dielectric environment. (a) Band-diagrams as a function of the permittivity of the top dielectric. (b) Comparison 
of the electric field between the top Air/bottom SiO2 and top HfO2/bottom SiO2 dielectric setups. (c) Cutlines of magnitude of current density at 
the center of the 1L-MoS2 for the four choices of the top dielectric. 
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dielectric environment and spatially non-uniform doping on 𝑅𝑅C. 
We see that a low- 𝜅𝜅  dielectric makes two important 
contributions in reducing 𝑅𝑅C  – by reducing the TW for 
electrons to tunnel into the TMD from the metal and enhancing 
the barrier lowering effect at the metal-MoS2 interface. In terms 
of doping, we find that the level of doping in the region of the 
1L-MoS2 underneath the metal (𝑁𝑁sov)  has an insignificant 
effect in reducing 𝑅𝑅C. TW is found to strongly depend on 𝑁𝑁sch, 
decreasing by a factor of 6 for an order of increase in  𝑁𝑁sch from 
1 × 1012 cm−2 to 1 × 1013 cm−2. 
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Fig. 3 Effect of spatially non-uniform doping in 1L-MoS2. (a) 𝑅𝑅𝐶𝐶 as a function of doping level (𝑁𝑁𝑠𝑠𝑐𝑐ℎ) in the channel region (green rectangle in 
the inset) for different levels of doping (𝑁𝑁𝑠𝑠𝑜𝑜𝑜𝑜) in the overlap region (blue rectangle in the inset). (b) TW as a function of 𝑁𝑁𝑠𝑠𝑐𝑐ℎ and 𝑁𝑁𝑠𝑠𝑜𝑜𝑜𝑜. (c) 
Comparison of conduction band-diagrams for four doping profiles in 1L-MoS2. 
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