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Abstract— In this paper, we study the possibility of using Large 

Language Models (LLMs) to create Technology Computer-Aided-

Design (TCAD) structure generation input files. LLMs are 

machine learning models trained on vast amounts of text data 

from the Web and are designed to understand, generate, and 

interact with humans through natural languages such as English. 

However, unlike programming languages with abundant training 

examples on the Web, TCAD examples are scarce. In this work, 

by using TCAD Sentaurus Structure Editor (SSE) as an example, 

7000 nanowire data are generated to fine-tune open-source models 

(Llama 2 and 3) to obtain chatbots that can generate an SSE input 

file for a nanowire with 18 parameters with English as an 

instruction. Structures are then created using SSE to verify the 

correctness of the input files. It shows that it is possible to create a 

chatbot even with limited resources. In-context one-shot learning 

is also studied. It shows that with large commercial models, in-

context one-shot learning is sufficient to generate the desired SSE 

input file. 

Keywords—ChatGPT, In-context Learning, Large Language 

Model (LLM), Llama, One-shot Learning, Technology Computer-

Aided Design (TCAD) 

I. INTRODUCTION  

Large Language Models (LLMs) such as ChatGPT have 
revolutionized various fields from education to medicine. 
However, they have not been widely used in TCAD. TCAD, as 
a sophisticated engineering tool, usually requires a significant 
amount of expertise from the engineers to set up an appropriate 
structure. It is thus desirable to train LLMs which can create 
input files for structure generation based on natural languages. 
However, unlike programming languages such as Python which 
have abundant training examples on the Web, TCAD examples 
are scarce.  

There are various types of LLMs available, such as Llama 
[1], ChatGPT [2], and Claude [3].  They all have a transformer 
architect, but only Llama models are open-source LLMs. Llama 
has models with parameters from 7 billion to 70 billion. 
ChatGPT and Claude are estimated to have more than 200 
billion parameters. 

In this work, using TCAD Sentaurus Structure Editor (SSE) 
as an example, two aspects of LLMs are studied. Firstly, we 
studied the possibility of fine-tuning Llama models to generate 
SSE input files. Secondly, we studied the possibility of using in-
context one-shot learning on the most powerful LLMs 
(including ChatGPT and Claude).  

II. DATA GENERATION 

An SSE nanowire input file is used as a template to generate 
7000 pairs of instruction (English description of nanowire) and 
output (SSE input files). Fig. 1 shows an example. The nanowire 
is a cascode nanowire [4] with two gate regions under which 
different dopings and materials are used. The gate oxide 
thickness, material, and doping in various regions are changed 
randomly to generate the instruction-output pairs. The data are 
formatted into the Alpaca dataset format with only instruction 
and output keys while the “input” key is left empty. Note that 
the English description in the instruction of the training data is 
fixed with only the 18 parameters varied. It will be shown that 
the chatbot to be trained can handle any variation in the English 
description.  

III. LLM FINE-TUNING 

A. Fine-Tuning Llama 2 and Llama 3 Models 

The data is then used to fine-tune Meta Llama-2 and Llama-
3 LLM. Llama-2 LLM models are open-source with 3 sizes of 7 

a) Instruction: This structure is a nanowire transistor. There are 5 main regions: the source, short gate, long gate, drain, and oxide. There are also 3 contacts: 
source, drain, and gate. The gate contact covers the short gate and long gate length. The source region is of the material SiGe with a length of 0.32 micrometers 
and it is doped with Phosphorus at a concentration of 633899008937397583872 cm^-3. The short gate region is of the material Silicon with a length of 0.03 
micrometers and it is doped with Arsenic at a concentration of 684550053188818960384 cm^-3. The long gate region is of the material Silicon with a length of 
0.07 micrometers and it is doped with Boron at a concentration of 708643624252055093248 cm^-3. The drain region is of the material Diamond with a length 
of 0.32 micrometers and it is doped with Boron at a concentration of 666868145841890525184 cm^-3. The gate oxide thickness is 0.007 micrometers. The 
nanowire thickness is 0.006 micrometers. 
b) Part of the Output:                                                                                                                                                      c) 

(define tox 0.007)    //   (define Lgs 0.03)  //    (define Lgl 0.07)  
(sdegeo:create-rectangle (position XGates Ymin 0)  (position XGatel Ymax 0) "Silicon" "R.Long_Gate") 
(sdegeo:create-rectangle (position XGatel Ymin 0)  (position Xmax Ymax 0) "Diamond" "R.Drain") 
(sdedr:define-constant-profile  "Const.Source"  Phosphorus  633899008937397583872 )  
 

 
Fig. 1. a) An example of the training data with the 18 parameters highlighted in the natural language instruction. b) A part of the output (SSE input file 
corresponding to the natural language). c) The corresponding SSE structure (the x and y axes are not in scale). 
 

20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

im
ul

at
io

n 
of

 S
em

ic
on

du
ct

or
 P

ro
ce

ss
es

 a
nd

 D
ev

ic
es

 (S
IS

PA
D)

 |
 9

79
-8

-3
31

5-
16

35
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

SI
SP

AD
62

62
6.

20
24

.1
07

33
01

5

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 14:01:50 UTC from IEEE Xplore.  Restrictions apply. 



(Llama-2-7B), 13 (Llama-2-13B), and 70 (Llama-2-70B) billion 
parameters, while Llama-3 has 2 sizes of 8 (Llama-3-8B) and 70 
(Llama-3-70B) billion parameters. Due to the limitation of our 
computing resources, the Llama-2-7B and Llama-3-8B models 
are used. Besides the base model for sentence completion/ word 
prediction, these models are also fine-tuned by Meta to form the 
corresponding chat versions. In this study, both the base (Llama-
2-7B and Llama-3-8B) and chat versions (Llama-2-7B-chat, 
Llama-3-8B-Instruct) are investigated by fine-tuning with our 
SSE data (Fig. 2). 

The Llama-2-7B base and Llama-2-7B-chat models are fine-

tuned using 2 Nvidia GPUs (Quadro RTX 8000) each with 

48GB GDDR6 memory. Quantization is used in which 16-bit 

operations are quantized to 8-bit. The fine-tuning time is 9 and 

16 hours for the base and chat model, respectively. In the fine-

tuning stage, we followed the training process in “llama-

recipes”. We need to transform/convert the base model weight/ 

checkpoint files of Llama-2-7B to Hugging Face weight to use 

Hugging Face's transformer. We use Low-Rank Adaptation 

(LoRA) [5] as a Parameter-Efficient Fine-Tuning (PEFT) 

method to perform the fine-tuning during which the original 

parameters are fixed and a parallel low-rank adapter network 

with 4 million parameters is added and trained for this specific 

application. Note that old and new networks are merged and the 

original knowledge is preserved in this process. The new base 

model is dubbed “Llama2-SJSU-TCAD-base”. To fine-tune the 

Llama-2-7B-chat model, we also need to use appropriate 

system prompting in front of each instruction-output pair. The 

system prompt should be well-deigned to help the LLM 

understand the context of the training data during fine-tuning. 

Fig. 3 shows two system prompts. The second (first) one was 

effective (ineffective) in training a chatbot to generate correct 

SSE input files. The new chat model based on the effective 

prompt is dubbed “Llama2-SJSU-TCAD-chat”. 4k data among 

the 7k generated data are used with 3 epochs. Each epoch has 

1000 steps. Since TCAD requires accurate numbers, 

temperature and top_p, which control the randomness, are set 

to be small. 

A similar approach is applied to the Llama-3-8B-Instruct 

model (an updated version of the Llama-2-7B-chat model). It 

has new special tokens. Another well-designed system prompt 

is used (Fig. 4). However, the result was not satisfactory with 

4k data and 3 epochs. Therefore, we increased the number of 

data entries up to 7k with 8 epochs and it took more than 60 

hours to finish. Fig. 5 shows the training and validation losses. 

While the loss is already small after 100 steps of training, good 

results are only obtained after 8000 steps (i.e. 8 epochs). The 

best performance finetuned model is named Llama3-SJSU-

TCAD-Chat. 

B. Performance 

A modified English description of the task is shown in Fig. 

6a with unseen parameters. It should be noted that uncommonly 

used English sentence structures and words are deliberately 

used. New sentences are added and the order of structure 

 
Fig. 2. Evolution of Llama-2-7B models in this study. The models fine-
tuned with SSE data are shown in green. A similar flow is used to create 

Llama3-SJSU-TCAD-Chat. 

a) Bad: “ <s>[INST] <<SYS>>You are an electrical engineer and writing 
an input file to Sentaurus Structure Editor to generate the MOSFET 
structure. Below is the natural language of a semiconductor MOSFET 
structure description<</SYS>>. Description: 
\n{description}[/INST]\n\n###respond:{TCAD input file}</s>” 

 
b) Good: "<s>[INST] <<SYS>>You are an intelligent assistant with 
specialized expertise in electrical engineering and semiconductor device 
simulation. Your task involves assisting users in creating input files for a 
TCAD tool, the Sentaurus Structure Editor. This tool plays a critical role in 
the design and simulation of semiconductor devices, including MOSFETs 
(Metal-Oxide-Semiconductor Field-Effect Transistors). When users provide 
you with a natural language description of a semiconductor MOSFET 
structure, your job is to translate this description into the structured, precise 
format required by the Sentaurus Structure Editor. Your translation must 
accurately reflect the user's specifications, including device type, materials, 
dimensions, doping concentrations, and any specific configurations or layers 
they describe. <</SYS>>. Description from 
user:\n{description}[/INST]\n\n### assistant respond:{TCAD input 
file}</s>" 

Fig. 3. Bad and ineffective (a) vs. good and effective (b) system prompt for 
Llama-2-7B-chat fine-tuning. The highlighted green texts are believed to help 
the model achieve more accurate fine-tuning and understand better the 
meaning of the training data. The highlighted blue texts are special tokens of 
Llama-2-7B-chat. 

<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are an AI 
with specialized expertise in electrical engineering and semiconductor 
device simulation. Your primary task is to assist users in creating precise, 
structured input files for the Sentaurus Structure Editor, a tool essential for 
the design and simulation of semiconductor devices such as MOSFETs 
(Metal-Oxide-Semiconductor Field-Effect Transistors).\nYour role involves 
the following:\n1. Receive natural language descriptions of MOSFET 
structures from users.\n2. Accurately translate these descriptions into the 
structured, precise format required by the Sentaurus Structure Editor.\n3. 
Ensure the translated file includes all necessary specifications provided by 
the user, such as device type, materials, dimensions, doping concentrations, 
and specific configurations or layers.\nThis task requires a deep 
understanding of semiconductor physics, meticulous attention to detail, and 
the ability to interpret and formalize technical language.<|eot_id|> 
<|start_header_id|>user<|end_header_id|> Create a TCAD Sentaurus 
structure input file based on this instruction: 
\n{instruction}<|eot_id|>\n\n<|start_header_id|>assistant<|end_header_id|>a
ssistant responds: {output} <|eot_id|><|end_of_text|> 

Fig. 4. The system prompt in fine-tuning with Llama-3-8B-Instruct special 
tokens in blue color and data entry in orange. The highlighted green texts are 
believed to help the model achieve more accurate fine-tuning and understand 
better the meaning of the training data. 
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description is shuffled compared to the training data in Fig. 1. 

Firstly, it is tested with ChatGPT4, which is estimated to have 

1.76 trillion parameters (251 times of Llama-2-7B), but it 

generates irrelevant TCAD files (Fig. 6b). On the other hand, 

Llama-SJSU-TCAD-base sometimes creates an error-free SSE 

input file even when it is trained with only 1k data. However, it 

might also create files with a few mistakes. For example, Fig. 6c 

shows the responses from Llama-SJSU-TCAD-base for the 

same instruction which performs much better than ChatGTP4 

but fails to fully understand the meaning of “3.11e18” (it gave 

3.11e20). This is the same for Llama2-SJSU-TCAD-chat (Fig. 

6d). It should be noted that the fine-tuned models also perform 

better than ChatGPT when “What are the differences between a 

TCAD input file and an English paragraph about a transistor 

description?” is asked and is able to provide a TCAD input 

example. Finally, the Llama3-SJSU-TCAD-chat is the most 

successful model (Fig. 6e). This model can generate the TCAD 

SSE input file with science notation such as “3.11e18”. 

Especially, it also understands “3.11x10^18” and changes it to 

“3.11e18”.  

IV.  IN-CONTEXT LEARNING WITH LLM 

In-context learning is a method to aid the LLM models in 

learning a task by giving one or more examples [6]. However, 

the model needs to have enough context length (CL). Therefore, 

we apply it to Llama-3-8B-Instruct (CL = 8k), GPT4o (CL = 

128k), and Claude 3.5 Sonnet (CL = 200k). They all have 

enough context length for the problem we are studying (which 

is too much for Llama2 with CL = 4k). We gave each model one 

a) Instruction: Generate a TCAD Sentaurus structure input file to create the following nanowire transistor with a source, a short gate, a long gate, drain, 
and oxide, as well as three contacts designated for the source, drain, and gate. The gate contact is notable for its coverage across both the short and long 

gates. The short gate, on the other hand, is comprised of Silicon, spans 0.005 micrometers, and is doped with Arsenic at 9e19 cm^-3. In a similar vein, the 
long gate, also crafted from Silicon, has a length of 0.015 micrometers and is doped with Boron at 8.784646123e20 cm^-3. Furthermore, the drain region, 
utilizing Diamond and extending 0.32 micrometers, is doped with Boron at 6.66e20 cm^-3. Lastly, the gate oxide's thickness is 0.001 micrometers, 
complementing the nanowire's thickness of 0.006 micrometers. The construction includes the source area, which is made of SiGe material, measures 0.32 
micrometers in length, and is doped with Phosphorus at a concentration of 3.11e18 cm^-3. 
 
b) Part of ChatGPT 4.0 output: # Sentaurus Structure Definition for a Multi-Gate Nanowire Transistor // # Define materials //Material Si 

Material SiGe // Material Diamond // Material SiO2 // # Define the device structure // # Geometry dimensions are in micrometers (um) 
# Source region – SiGe // Region / Source {   Material = "SiGe"   Doping {      Type = "n"    Concentration = 3.11e18   }   Rectangle { 
    Length = 0.32    Thickness = 0.006  }} 

c) Part of the Output Llama-SJSU-TCAD-Base:  
(define tox 0.001) // (define Lgs 0.005) // (define Lgl 0.015) // (define Ls 0.32) // (define Ld 0.32)  
(define Rl 0.006) // (define Rs 0.006) // (define Xmin 0) // (define Xmax (+ Ls Ltotal Ld)) 
(sdegeo:create-rectangle (position Xmin Ymin 0)  (position XSource Ymax 0) "SiGe" "R.Source") 
(sdegeo:create-rectangle (position XSource Ymin 0)  (position XGates Rs 0) "Silicon" "R.Short_Gate") 
(sdedr:define-constant-profile  "Const.Source" Phosphorus 311199862647237219968) 
(sdedr:define-constant-profile  "Const.Long_Gate" Boron 878464612339274968576)  

d) Part of the Output Llama2-SJSU-TCAD-Chat:  
(define tox 0.001) // (define Lgs 0.005) // (define Lgl 0.015) // (define Ls 0.32) // (define Ld 0.32) 
(define Rl 0.006) // (define Rs 0.006)//  (define Xmin 0) // (define Xmax (+ Ls Ltotal Ld)) 
(sdegeo:create-rectangle (position Xmin Ymin 0)  (position XSource Ymax 0) "SiGe" "R.Source") 
(sdegeo:create-rectangle (position XSource Ymin 0)  (position XGates Rs 0) "Silicon" "R.Short_Gate") 
(sdedr:define-constant-profile  “Const.Source" Phosphorus 311948960234138796416)) 
(sdedr:define-constant-profile "Const.Long_Gate" Boron 878464612373296374400) 

e) Part of the Output Llama3-SJSU-TCAD-Chat: 

    (define Lgs 0.005)(define Lgl 0.015)(define Ltotal (+ Lgs Lgl))(define Ls 0.32)(define Ld 0.32)(define Rl 0.006)(define Rs 0.006)(define Xmin 0)(define    
Xmax (+ Ls Ltotal Ld))(define tg 0.001)(define Ymin 0)(define Ymax Rl)(define XSource (+ Xmin Ls))(define XGates (+ XSource Lgs))(define XGatel (+ 
XGates Lgl)) 
    (sdedr:define-constant-profile "Const.Source"Phosphorus 3.11e18) 
    (sdedr:define-constant-profile "Const.Short_Gate "Arsenic 9e19) 
    (sdedr:define-constant-profile "Const.Long_Gate" Boron 8.784646123e20) 
    (sdedr:define-constant-profile"Const.Drain" Boron 6.66e20) 

Fig. 6. Zero-shot with unseen natural language instruction with new statements, shuffled sentences, and uncommonly used English words and phrases 
(highlighted). b) A part of the output from ChatGPT4. c) A part of the output from Llama-SJSU-TCAD-base with a mistake highlighted and the structure 
generated. d) A part of the output from Llama-SJSU-TCAD-chat with a mistake highlighted. e) A part of the output from Llama-SJSU-TCAD-Agent, this is 
correct generation with green highlighted. 

 

 
Fig. 5. Training and validation loss as a function of the training step when 
fine-tuning Llama-3-8B-Instruct. Note that the validation loss is only 

calculated after each epoch and therefore there are only 8 points. 
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example of how to generate a TCAD SSE Input File from human 

instruction and then asked it to perform another generation with 

a different human language instruction. This is also called one-

shot learning. Note that we will not apply it to fine-tuned models 

as they have been fine-tuned with the examples. Fig. 7 and Fig. 

8 show the setup for in-context one-shot learning for Llama, and 

ChatGPT and Claude, respectively. Fig. 9 shows the instructions 

used. Since numerical representation is a weakness in LLM, we 

also studied the ability of the LLMs to understand scientific 

notation by requesting it to convert it into non-scientific notation 

(last sentence in Fig. 9). 

Table I summarizes the results. Llama 2 models do not 

perform well because they do not have enough context length. 

ChatGPT 4 also does not perform well despite it being expected 

to have more than 1 trillion parameters. However, Llama 3, 

ChatGPT4o, and Claude perform well when there is no scientific 

notation conversion requirement while they all have fewer 

parameters than ChatGPT4. The ChatGPT4o is the only model 

that fully can understand scientific notation and perform the 

conversion through in-context one-shot learning for  SSE input 

file generation (Fig. 10).  

TABLE I.  IN-CONTEXT ONE-SHORT LEARNING PERFORMANCE  

Models 
Without Scientific 

Notation Conversion 

Requirement  

With Scientific 

Notation Conversion 

Requirement 

Llama-2-7B � � 

Llama-2-7B-chat � � 

Llama-3-8B-Instruct  �
* 

Chat-GPT-4 � � 

Chat-GPT-4o   

Claude-3.5-Sonnet  �
* 

�: Bad results. : Good results. *Good results but cannot handle scientific 
notation.  

V. CONCLUSIONS 

In conclusion, this research shows a successful application 

of LLM in TCAD. The fine-tuned Llama models using limited 

data prove LLMs can be trained to generate accurate TCAD 

input files. This capability highlights the potential of LLMs to 

significantly reduce the barrier to entry for engineers and 

researchers in semiconductor device simulation, making 

advanced tools like TCAD more accessible and user-friendly. 
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“role”:”user”,”content”:{TCAD SSE Input File 1st instruction} 

“role”:”assistant”,”content”:{A TCAD SSE Input File example output } 

“role”:”user”,”content”:{TCAD SSE Input File 2nd instruction} 

Fig. 7. In-context one-shot learning prompt structure of Llama model. The 

role is blue highlighted, the instruction is orange highlighted, and the 

example output is green highlighted. 

User: “Task: Creating a TCAD Sentaurus structure input file based on 
instruction.  + {TCAD SSE Input File 1st instruction} 

Example:{TCAD SSE Input File example output} 

Your turn: {TCAD SSE Input File 2nd instruction}” 

Fig. 8. In-context one-shot learning prompt structure for ChatGPT and 

Claude. The role is blue highlighted, the instruction is orange highlighted, 

and the example output is green highlighted. 

Complex Instruction: Fabricate a detailed schematic of a nanowire 
transistor involving a source zone composed of SiGe (length: 0.33 µm, 
Phosphorus doping: 3.15e18 cm^-3), bifurcated gate sections where the 
shorter is Silicon-based, 0.028µm in length, Arsenic-doped at 9.1e19 cm^-
3, and the longer is Silicon-based, 0.53 µm, Boron-doped at 8.75e20 cm^-
3. The drain region utilizes a Diamond substrate, 0.31 µm long, with a 
Boron doping of 6.75e20 cm^-3. This structure is further refined with a 
gate oxide layer 0.0068 µm thick and a nanowire thickness of 0.0058 µm. 
Each segment—source, dual gates, and drain—is equipped with its 
respective contact. Do not use science notation for number, Ex: for 
3.254e17, you should generate a whole number. 

Fig. 9. Example of one-shot learning command. The last sentence (red) 

represents a request to generate input files by converting scientific notation 

to a non-scientific one. 

 

(define Lgs 0.028)//(define Lgl 0.53)//(define Ltotal (+ Lgs Lgl))//(define 
Ls 0.33) 
(define Ld 0.31)//(define Rl 0.0058)//(define Rs 0.0058)//(define Xmin 
0)(define Xmax (+ Ls Ltotal Ld))//(define tg 0.0068)//(define Ymin 
0)//(define Ymax Rl)//(define XSource (+ Xmin Ls))//(define XGates (+ 
XSource Lgs))//(define XGatel (+ XGates Lgl)) 
(sdegeo:set-default-constant-profile "Const.Source" Phosphorus 
3150000000000000000) 
(sdegeo:set-default-constant-profile "Const.Short_Gate" Arsenic 
91000000000000000000) 
(sdegeo:set-default-constant-profile "Const.Long_Gate" Boron 
875000000000000000000) 
(sdegeo:set-default-constant-profile "Const.Drain" Boron 
675000000000000000000) 

Fig. 10. Part of ChatGPT4o model output after in-context one-shot learning 

in responds to the request in Fig. 9. It has successfully converted the 

scientific notation to a non-scientific one. 

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 14:01:50 UTC from IEEE Xplore.  Restrictions apply. 


