
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

TCAD Structure Input File Generation Using

Large Language Model

Le Minh Long Nguyen
Electrical Engineering Department

San Jose State University

 San Jose, CA, USA
leminhlong.nguyen@sjsu.edu

Albert Lu
Electrical Engineering Department

San Jose State University

 San Jose, CA, USA
albert.lu@sjsu.edu

Hiu Yung Wong
Electrical Engineering Department

San Jose State University

 San Jose, CA, USA
hiuyung.wong@sjsu.edu

Abstract— In this paper, we study the possibility of using Large

Language Models (LLMs) to create Technology Computer-Aided-

Design (TCAD) structure generation input files. LLMs are

machine learning models trained on vast amounts of text data

from the Web and are designed to understand, generate, and

interact with humans through natural languages such as English.

However, unlike programming languages with abundant training

examples on the Web, TCAD examples are scarce. In this work,

by using TCAD Sentaurus Structure Editor (SSE) as an example,

7000 nanowire data are generated to fine-tune open-source models

(Llama 2 and 3) to obtain chatbots that can generate an SSE input

file for a nanowire with 18 parameters with English as an

instruction. Structures are then created using SSE to verify the

correctness of the input files. It shows that it is possible to create a

chatbot even with limited resources. In-context one-shot learning

is also studied. It shows that with large commercial models, in-

context one-shot learning is sufficient to generate the desired SSE

input file.

Keywords—ChatGPT, In-context Learning, Large Language

Model (LLM), Llama, One-shot Learning, Technology Computer-

Aided Design (TCAD)

I. INTRODUCTION

Large Language Models (LLMs) such as ChatGPT have
revolutionized various fields from education to medicine.
However, they have not been widely used in TCAD. TCAD, as
a sophisticated engineering tool, usually requires a significant
amount of expertise from the engineers to set up an appropriate
structure. It is thus desirable to train LLMs which can create
input files for structure generation based on natural languages.
However, unlike programming languages such as Python which
have abundant training examples on the Web, TCAD examples
are scarce.

There are various types of LLMs available, such as Llama
[1], ChatGPT [2], and Claude [3]. They all have a transformer
architect, but only Llama models are open-source LLMs. Llama
has models with parameters from 7 billion to 70 billion.
ChatGPT and Claude are estimated to have more than 200
billion parameters.

In this work, using TCAD Sentaurus Structure Editor (SSE)
as an example, two aspects of LLMs are studied. Firstly, we
studied the possibility of fine-tuning Llama models to generate
SSE input files. Secondly, we studied the possibility of using in-
context one-shot learning on the most powerful LLMs
(including ChatGPT and Claude).

II. DATA GENERATION

An SSE nanowire input file is used as a template to generate
7000 pairs of instruction (English description of nanowire) and
output (SSE input files). Fig. 1 shows an example. The nanowire
is a cascode nanowire [4] with two gate regions under which
different dopings and materials are used. The gate oxide
thickness, material, and doping in various regions are changed
randomly to generate the instruction-output pairs. The data are
formatted into the Alpaca dataset format with only instruction
and output keys while the “input” key is left empty. Note that
the English description in the instruction of the training data is
fixed with only the 18 parameters varied. It will be shown that
the chatbot to be trained can handle any variation in the English
description.

III. LLM FINE-TUNING

A. Fine-Tuning Llama 2 and Llama 3 Models

The data is then used to fine-tune Meta Llama-2 and Llama-
3 LLM. Llama-2 LLM models are open-source with 3 sizes of 7

a) Instruction: This structure is a nanowire transistor. There are 5 main regions: the source, short gate, long gate, drain, and oxide. There are also 3 contacts:
source, drain, and gate. The gate contact covers the short gate and long gate length. The source region is of the material SiGe with a length of 0.32 micrometers
and it is doped with Phosphorus at a concentration of 633899008937397583872 cm^-3. The short gate region is of the material Silicon with a length of 0.03
micrometers and it is doped with Arsenic at a concentration of 684550053188818960384 cm^-3. The long gate region is of the material Silicon with a length of
0.07 micrometers and it is doped with Boron at a concentration of 708643624252055093248 cm^-3. The drain region is of the material Diamond with a length
of 0.32 micrometers and it is doped with Boron at a concentration of 666868145841890525184 cm^-3. The gate oxide thickness is 0.007 micrometers. The
nanowire thickness is 0.006 micrometers.
b) Part of the Output: c)

(define tox 0.007) // (define Lgs 0.03) // (define Lgl 0.07)
(sdegeo:create-rectangle (position XGates Ymin 0) (position XGatel Ymax 0) "Silicon" "R.Long_Gate")
(sdegeo:create-rectangle (position XGatel Ymin 0) (position Xmax Ymax 0) "Diamond" "R.Drain")
(sdedr:define-constant-profile "Const.Source" Phosphorus 633899008937397583872)

Fig. 1. a) An example of the training data with the 18 parameters highlighted in the natural language instruction. b) A part of the output (SSE input file
corresponding to the natural language). c) The corresponding SSE structure (the x and y axes are not in scale).

20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

im
ul

at
io

n
of

 S
em

ic
on

du
ct

or
 P

ro
ce

ss
es

 a
nd

 D
ev

ic
es

 (S
IS

PA
D)

 |
 9

79
-8

-3
31

5-
16

35
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SI
SP

AD
62

62
6.

20
24

.1
07

33
01

5

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 14:01:50 UTC from IEEE Xplore. Restrictions apply.

(Llama-2-7B), 13 (Llama-2-13B), and 70 (Llama-2-70B) billion
parameters, while Llama-3 has 2 sizes of 8 (Llama-3-8B) and 70
(Llama-3-70B) billion parameters. Due to the limitation of our
computing resources, the Llama-2-7B and Llama-3-8B models
are used. Besides the base model for sentence completion/ word
prediction, these models are also fine-tuned by Meta to form the
corresponding chat versions. In this study, both the base (Llama-
2-7B and Llama-3-8B) and chat versions (Llama-2-7B-chat,
Llama-3-8B-Instruct) are investigated by fine-tuning with our
SSE data (Fig. 2).

The Llama-2-7B base and Llama-2-7B-chat models are fine-

tuned using 2 Nvidia GPUs (Quadro RTX 8000) each with

48GB GDDR6 memory. Quantization is used in which 16-bit

operations are quantized to 8-bit. The fine-tuning time is 9 and

16 hours for the base and chat model, respectively. In the fine-

tuning stage, we followed the training process in “llama-

recipes”. We need to transform/convert the base model weight/

checkpoint files of Llama-2-7B to Hugging Face weight to use

Hugging Face's transformer. We use Low-Rank Adaptation

(LoRA) [5] as a Parameter-Efficient Fine-Tuning (PEFT)

method to perform the fine-tuning during which the original

parameters are fixed and a parallel low-rank adapter network

with 4 million parameters is added and trained for this specific

application. Note that old and new networks are merged and the

original knowledge is preserved in this process. The new base

model is dubbed “Llama2-SJSU-TCAD-base”. To fine-tune the

Llama-2-7B-chat model, we also need to use appropriate

system prompting in front of each instruction-output pair. The

system prompt should be well-deigned to help the LLM

understand the context of the training data during fine-tuning.

Fig. 3 shows two system prompts. The second (first) one was

effective (ineffective) in training a chatbot to generate correct

SSE input files. The new chat model based on the effective

prompt is dubbed “Llama2-SJSU-TCAD-chat”. 4k data among

the 7k generated data are used with 3 epochs. Each epoch has

1000 steps. Since TCAD requires accurate numbers,

temperature and top_p, which control the randomness, are set

to be small.

A similar approach is applied to the Llama-3-8B-Instruct

model (an updated version of the Llama-2-7B-chat model). It

has new special tokens. Another well-designed system prompt

is used (Fig. 4). However, the result was not satisfactory with

4k data and 3 epochs. Therefore, we increased the number of

data entries up to 7k with 8 epochs and it took more than 60

hours to finish. Fig. 5 shows the training and validation losses.

While the loss is already small after 100 steps of training, good

results are only obtained after 8000 steps (i.e. 8 epochs). The

best performance finetuned model is named Llama3-SJSU-

TCAD-Chat.

B. Performance

A modified English description of the task is shown in Fig.

6a with unseen parameters. It should be noted that uncommonly

used English sentence structures and words are deliberately

used. New sentences are added and the order of structure

Fig. 2. Evolution of Llama-2-7B models in this study. The models fine-
tuned with SSE data are shown in green. A similar flow is used to create

Llama3-SJSU-TCAD-Chat.

a) Bad: “ <s>[INST] <<SYS>>You are an electrical engineer and writing
an input file to Sentaurus Structure Editor to generate the MOSFET
structure. Below is the natural language of a semiconductor MOSFET
structure description<</SYS>>. Description:
\n{description}[/INST]\n\n###respond:{TCAD input file}</s>”

b) Good: "<s>[INST] <<SYS>>You are an intelligent assistant with
specialized expertise in electrical engineering and semiconductor device
simulation. Your task involves assisting users in creating input files for a
TCAD tool, the Sentaurus Structure Editor. This tool plays a critical role in
the design and simulation of semiconductor devices, including MOSFETs
(Metal-Oxide-Semiconductor Field-Effect Transistors). When users provide
you with a natural language description of a semiconductor MOSFET
structure, your job is to translate this description into the structured, precise
format required by the Sentaurus Structure Editor. Your translation must
accurately reflect the user's specifications, including device type, materials,
dimensions, doping concentrations, and any specific configurations or layers
they describe. <</SYS>>. Description from
user:\n{description}[/INST]\n\n### assistant respond:{TCAD input
file}</s>"

Fig. 3. Bad and ineffective (a) vs. good and effective (b) system prompt for
Llama-2-7B-chat fine-tuning. The highlighted green texts are believed to help
the model achieve more accurate fine-tuning and understand better the
meaning of the training data. The highlighted blue texts are special tokens of
Llama-2-7B-chat.

<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are an AI
with specialized expertise in electrical engineering and semiconductor
device simulation. Your primary task is to assist users in creating precise,
structured input files for the Sentaurus Structure Editor, a tool essential for
the design and simulation of semiconductor devices such as MOSFETs
(Metal-Oxide-Semiconductor Field-Effect Transistors).\nYour role involves
the following:\n1. Receive natural language descriptions of MOSFET
structures from users.\n2. Accurately translate these descriptions into the
structured, precise format required by the Sentaurus Structure Editor.\n3.
Ensure the translated file includes all necessary specifications provided by
the user, such as device type, materials, dimensions, doping concentrations,
and specific configurations or layers.\nThis task requires a deep
understanding of semiconductor physics, meticulous attention to detail, and
the ability to interpret and formalize technical language.<|eot_id|>
<|start_header_id|>user<|end_header_id|> Create a TCAD Sentaurus
structure input file based on this instruction:
\n{instruction}<|eot_id|>\n\n<|start_header_id|>assistant<|end_header_id|>a
ssistant responds: {output} <|eot_id|><|end_of_text|>

Fig. 4. The system prompt in fine-tuning with Llama-3-8B-Instruct special
tokens in blue color and data entry in orange. The highlighted green texts are
believed to help the model achieve more accurate fine-tuning and understand
better the meaning of the training data.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 14:01:50 UTC from IEEE Xplore. Restrictions apply.

description is shuffled compared to the training data in Fig. 1.

Firstly, it is tested with ChatGPT4, which is estimated to have

1.76 trillion parameters (251 times of Llama-2-7B), but it

generates irrelevant TCAD files (Fig. 6b). On the other hand,

Llama-SJSU-TCAD-base sometimes creates an error-free SSE

input file even when it is trained with only 1k data. However, it

might also create files with a few mistakes. For example, Fig. 6c

shows the responses from Llama-SJSU-TCAD-base for the

same instruction which performs much better than ChatGTP4

but fails to fully understand the meaning of “3.11e18” (it gave

3.11e20). This is the same for Llama2-SJSU-TCAD-chat (Fig.

6d). It should be noted that the fine-tuned models also perform

better than ChatGPT when “What are the differences between a

TCAD input file and an English paragraph about a transistor

description?” is asked and is able to provide a TCAD input

example. Finally, the Llama3-SJSU-TCAD-chat is the most

successful model (Fig. 6e). This model can generate the TCAD

SSE input file with science notation such as “3.11e18”.

Especially, it also understands “3.11x10^18” and changes it to

“3.11e18”.

IV. IN-CONTEXT LEARNING WITH LLM

In-context learning is a method to aid the LLM models in

learning a task by giving one or more examples [6]. However,

the model needs to have enough context length (CL). Therefore,

we apply it to Llama-3-8B-Instruct (CL = 8k), GPT4o (CL =

128k), and Claude 3.5 Sonnet (CL = 200k). They all have

enough context length for the problem we are studying (which

is too much for Llama2 with CL = 4k). We gave each model one

a) Instruction: Generate a TCAD Sentaurus structure input file to create the following nanowire transistor with a source, a short gate, a long gate, drain,
and oxide, as well as three contacts designated for the source, drain, and gate. The gate contact is notable for its coverage across both the short and long

gates. The short gate, on the other hand, is comprised of Silicon, spans 0.005 micrometers, and is doped with Arsenic at 9e19 cm^-3. In a similar vein, the
long gate, also crafted from Silicon, has a length of 0.015 micrometers and is doped with Boron at 8.784646123e20 cm^-3. Furthermore, the drain region,
utilizing Diamond and extending 0.32 micrometers, is doped with Boron at 6.66e20 cm^-3. Lastly, the gate oxide's thickness is 0.001 micrometers,
complementing the nanowire's thickness of 0.006 micrometers. The construction includes the source area, which is made of SiGe material, measures 0.32
micrometers in length, and is doped with Phosphorus at a concentration of 3.11e18 cm^-3.

b) Part of ChatGPT 4.0 output: # Sentaurus Structure Definition for a Multi-Gate Nanowire Transistor // # Define materials //Material Si

Material SiGe // Material Diamond // Material SiO2 // # Define the device structure // # Geometry dimensions are in micrometers (um)
Source region – SiGe // Region / Source { Material = "SiGe" Doping { Type = "n" Concentration = 3.11e18 } Rectangle {
 Length = 0.32 Thickness = 0.006 }}

c) Part of the Output Llama-SJSU-TCAD-Base:
(define tox 0.001) // (define Lgs 0.005) // (define Lgl 0.015) // (define Ls 0.32) // (define Ld 0.32)
(define Rl 0.006) // (define Rs 0.006) // (define Xmin 0) // (define Xmax (+ Ls Ltotal Ld))
(sdegeo:create-rectangle (position Xmin Ymin 0) (position XSource Ymax 0) "SiGe" "R.Source")
(sdegeo:create-rectangle (position XSource Ymin 0) (position XGates Rs 0) "Silicon" "R.Short_Gate")
(sdedr:define-constant-profile "Const.Source" Phosphorus 311199862647237219968)
(sdedr:define-constant-profile "Const.Long_Gate" Boron 878464612339274968576)

d) Part of the Output Llama2-SJSU-TCAD-Chat:
(define tox 0.001) // (define Lgs 0.005) // (define Lgl 0.015) // (define Ls 0.32) // (define Ld 0.32)
(define Rl 0.006) // (define Rs 0.006)// (define Xmin 0) // (define Xmax (+ Ls Ltotal Ld))
(sdegeo:create-rectangle (position Xmin Ymin 0) (position XSource Ymax 0) "SiGe" "R.Source")
(sdegeo:create-rectangle (position XSource Ymin 0) (position XGates Rs 0) "Silicon" "R.Short_Gate")
(sdedr:define-constant-profile “Const.Source" Phosphorus 311948960234138796416))
(sdedr:define-constant-profile "Const.Long_Gate" Boron 878464612373296374400)

e) Part of the Output Llama3-SJSU-TCAD-Chat:

 (define Lgs 0.005)(define Lgl 0.015)(define Ltotal (+ Lgs Lgl))(define Ls 0.32)(define Ld 0.32)(define Rl 0.006)(define Rs 0.006)(define Xmin 0)(define
Xmax (+ Ls Ltotal Ld))(define tg 0.001)(define Ymin 0)(define Ymax Rl)(define XSource (+ Xmin Ls))(define XGates (+ XSource Lgs))(define XGatel (+
XGates Lgl))
 (sdedr:define-constant-profile "Const.Source"Phosphorus 3.11e18)
 (sdedr:define-constant-profile "Const.Short_Gate "Arsenic 9e19)
 (sdedr:define-constant-profile "Const.Long_Gate" Boron 8.784646123e20)
 (sdedr:define-constant-profile"Const.Drain" Boron 6.66e20)

Fig. 6. Zero-shot with unseen natural language instruction with new statements, shuffled sentences, and uncommonly used English words and phrases
(highlighted). b) A part of the output from ChatGPT4. c) A part of the output from Llama-SJSU-TCAD-base with a mistake highlighted and the structure
generated. d) A part of the output from Llama-SJSU-TCAD-chat with a mistake highlighted. e) A part of the output from Llama-SJSU-TCAD-Agent, this is
correct generation with green highlighted.

Fig. 5. Training and validation loss as a function of the training step when
fine-tuning Llama-3-8B-Instruct. Note that the validation loss is only

calculated after each epoch and therefore there are only 8 points.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 14:01:50 UTC from IEEE Xplore. Restrictions apply.

example of how to generate a TCAD SSE Input File from human

instruction and then asked it to perform another generation with

a different human language instruction. This is also called one-

shot learning. Note that we will not apply it to fine-tuned models

as they have been fine-tuned with the examples. Fig. 7 and Fig.

8 show the setup for in-context one-shot learning for Llama, and

ChatGPT and Claude, respectively. Fig. 9 shows the instructions

used. Since numerical representation is a weakness in LLM, we

also studied the ability of the LLMs to understand scientific

notation by requesting it to convert it into non-scientific notation

(last sentence in Fig. 9).

Table I summarizes the results. Llama 2 models do not

perform well because they do not have enough context length.

ChatGPT 4 also does not perform well despite it being expected

to have more than 1 trillion parameters. However, Llama 3,

ChatGPT4o, and Claude perform well when there is no scientific

notation conversion requirement while they all have fewer

parameters than ChatGPT4. The ChatGPT4o is the only model

that fully can understand scientific notation and perform the

conversion through in-context one-shot learning for SSE input

file generation (Fig. 10).

TABLE I. IN-CONTEXT ONE-SHORT LEARNING PERFORMANCE

Models
Without Scientific

Notation Conversion

Requirement

With Scientific

Notation Conversion

Requirement

Llama-2-7B � �

Llama-2-7B-chat � �

Llama-3-8B-Instruct  �
*

Chat-GPT-4 � �

Chat-GPT-4o  

Claude-3.5-Sonnet  �
*

�: Bad results. : Good results. *Good results but cannot handle scientific
notation.

V. CONCLUSIONS

In conclusion, this research shows a successful application

of LLM in TCAD. The fine-tuned Llama models using limited

data prove LLMs can be trained to generate accurate TCAD

input files. This capability highlights the potential of LLMs to

significantly reduce the barrier to entry for engineers and

researchers in semiconductor device simulation, making

advanced tools like TCAD more accessible and user-friendly.

ACKNOWLEDGMENT

Part of the work was supported by the National Science

Foundation under Grant No. 2046220.

REFERENCES

[1] H. Touvron, et al., “LLaMA: Open and Efficient Foundation Language
Models,” arXiv:2302.13971.

[2] https://openai.com/index/hello-gpt-4o/

[3] https://www.anthropic.com/news/claude-3-5-sonnet

[4] H. Y. Wong, et al., “Enhancement Mode Recessed Gate and Cascode Gate
Junctionless Nanowire with Low Leakage and High Drive Current," in
IEEE TED, vol. 65, pp. 4004-4008, Sept. 2018.

[5] Y. Yu et al., "Low-Rank Adaptation of Large Language Model Rescoring
for Parameter-Efficient Speech Recognition," 2023 IEEE ASRU, Taiwan,
2023, pp. 1-8.

[6] Michael Xie and Sewon Min, (2022, August 5) "How does in-context
learning work? A framework for understanding the differences from
traditional supervised learning"

“role”:”user”,”content”:{TCAD SSE Input File 1st instruction}

“role”:”assistant”,”content”:{A TCAD SSE Input File example output }

“role”:”user”,”content”:{TCAD SSE Input File 2nd instruction}

Fig. 7. In-context one-shot learning prompt structure of Llama model. The

role is blue highlighted, the instruction is orange highlighted, and the

example output is green highlighted.

User: “Task: Creating a TCAD Sentaurus structure input file based on
instruction. + {TCAD SSE Input File 1st instruction}

Example:{TCAD SSE Input File example output}

Your turn: {TCAD SSE Input File 2nd instruction}”

Fig. 8. In-context one-shot learning prompt structure for ChatGPT and

Claude. The role is blue highlighted, the instruction is orange highlighted,

and the example output is green highlighted.

Complex Instruction: Fabricate a detailed schematic of a nanowire
transistor involving a source zone composed of SiGe (length: 0.33 µm,
Phosphorus doping: 3.15e18 cm^-3), bifurcated gate sections where the
shorter is Silicon-based, 0.028µm in length, Arsenic-doped at 9.1e19 cm^-
3, and the longer is Silicon-based, 0.53 µm, Boron-doped at 8.75e20 cm^-
3. The drain region utilizes a Diamond substrate, 0.31 µm long, with a
Boron doping of 6.75e20 cm^-3. This structure is further refined with a
gate oxide layer 0.0068 µm thick and a nanowire thickness of 0.0058 µm.
Each segment—source, dual gates, and drain—is equipped with its
respective contact. Do not use science notation for number, Ex: for
3.254e17, you should generate a whole number.

Fig. 9. Example of one-shot learning command. The last sentence (red)

represents a request to generate input files by converting scientific notation

to a non-scientific one.

(define Lgs 0.028)//(define Lgl 0.53)//(define Ltotal (+ Lgs Lgl))//(define
Ls 0.33)
(define Ld 0.31)//(define Rl 0.0058)//(define Rs 0.0058)//(define Xmin
0)(define Xmax (+ Ls Ltotal Ld))//(define tg 0.0068)//(define Ymin
0)//(define Ymax Rl)//(define XSource (+ Xmin Ls))//(define XGates (+
XSource Lgs))//(define XGatel (+ XGates Lgl))
(sdegeo:set-default-constant-profile "Const.Source" Phosphorus
3150000000000000000)
(sdegeo:set-default-constant-profile "Const.Short_Gate" Arsenic
91000000000000000000)
(sdegeo:set-default-constant-profile "Const.Long_Gate" Boron
875000000000000000000)
(sdegeo:set-default-constant-profile "Const.Drain" Boron
675000000000000000000)

Fig. 10. Part of ChatGPT4o model output after in-context one-shot learning

in responds to the request in Fig. 9. It has successfully converted the

scientific notation to a non-scientific one.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 14:01:50 UTC from IEEE Xplore. Restrictions apply.

