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Abstract—An efficient model capable of the time-resolved
modeling of armchair graphene nanoribbon field-effect transis-
tors based on a Wigner Transport Equation with non-parabolic
corrections is presented. With the inclusion of a mode-space
approach the computational burden is heavily reduced. The
resulting charge carrier and current densities agree well with
those obtained through a real space tight-binding formulation
of a non-equilibrium Greens Function method in the stationary
case. The self-consistent and transient capabilities of our
proposed approach are demonstrated for the THz switching
behavior. Furthermore, the presented method is well suited for
the analysis of nanotubes or nanoribbons composed of different
materials, as well as for the extension to interband transport.

Index Terms—Graphene nanoribbon, Wigner transport
equation, Quantum transport, DGFET, Switching

I. Introduction
In order to continue the scaling of nanoelectronic de-

vices, field-effect transistors (FETs) based on 1D materials
such as nanotubes and nanoribbons are promising options
[1]. Two of the most well known candidates are carbon
nanotubes (CNTs) and graphene nanoribbons (GNRs)
which can, depending on chirality, edge configuration
and width offer high charge carrier mobilities and band
gaps similar to those of conventional semiconductors,
as well as a plethora of other potentially exploitable
transport phenomena [2] that make them suitable for
THz applications [3]. Even though issues with large-
scale integration still persist, the research into possible
applications remains ongoing and as such requires the
simulation of the quantum charge carrier transport.

For the devices mentioned, the empirical tight-binding
method offers itself as an easy to implement approach
in both real and mode space and is readily incorporated
into transport models based on non-equilibrium Greens
functions (NEGF) [4] and density matrices [5]. However,
models based on the effective mass approximation can
be a valid and computationally efficient alternative if the
non-parabolicity corrections of the energy dispersion are
included [4].

On account of the computational effort, the NEGF
formalism is mostly limited to the stationary case so
that the Wigner Transport equation (WTE) is chosen for
the analysis of the time-resolved quantum charge carrier
transport in GNR FETs. Therefore, a previously presented
approach of a phase space exponential operator for the

WTE [6], [7] is extended to include the necessary non-
parabolic corrections by means of a power series expansion
of the Hamiltonian to the order of ∇4.

II. Phase Space Exponential Operator for the
Non-parabolic Wigner Transport Equation

Assuming a constant effective mass along the channel,
the device Hamiltonian can be written as [8]

Ĥ =
∑
n=1

~2nc2n∇2n + V (r) (1)

with the coefficients c2n including the respective effective
masses. Assuming transport along one dominant direction
and taking only first order corrections into account (1)
simplifies to

Ĥ = ~4c4
∂4

∂x4
+ ~2c2

∂2

∂x2
+ V (x). (2)

After inserting (2) into the von-Neumann equation and
applying the inverse Weyl transform, one arrives at the
WTE for the Wigner function f(χ, k, t) given by [8]

∂

∂t
f(χ,k, t) = ~3c4k

∂3

∂χ3
f(χ, k, t)

+
(
−4~3c4k3 + ~c2k

) ∂

∂χ
f(χ, k, t)

+
1

ı~

∫
dk′

2π
Ṽ (χ, k − k′)f(χ, k′, t)

(3)

with the integral kernel [7]

Ṽ (χ, k) =

∫
dξ exp(−ıkξ) · V̄ , (4)

where the term

V̄ (χ, ξ) = V

(
χ+

ξ

2

)
− V

(
χ− ξ

2

)
− ıW (ξ) (5)

contains the band potential, the self-consistent Hartree
potential and any externally applied biases (V ), as well
as the complex absorbing potential ıW , which accounts
for the finite computational domain in ξ-direction [9]. At
this point, the k-direction is readily discretized into Nk

equidistant points so that the vector f(χ, t) contains all
discrete k values, leading to the semi-discrete WTE
∂

∂t
f(χ, t) = [D3]

∂3

∂χ3
f(χ, t)+[D1]

∂

∂χ
f(χ, t)+[D0]f(χ, t)

(6)
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with the matrix elements

Dl,l′

3 = ~3c4klδl,l′

Dl,l′

1 =
(
−~3c4k3l + ~c2kl

)
δl,l′

Dl,l′

0 =
1

ı~
∆k

2π

Nξ∑
j=1

∆ξ exp (−ı (kl − k′l) ξj) V̄ (χ, ξj),

(7)

where the integral from (4) was approximated by utilizing
the midpoint rule [7].

Next, the derivatives in χ-direction are to be dis-
cretized. Accordingly, the phase space exponential inte-
grator method from [6], [7] has to be extended to allow
for the inclusion of higher order derivatives in χ. After
rewriting the right-hand side of (6) as a system of first
order coupled differential equations

∂

∂χ
Π(χ) = Π(χ) [Γ] (8)

with

Π(χ) =

(
f(χ),

∂

∂χ
f(χ),

∂2

∂χ2
f(χ)

)T

(9)

and

[Γ] =

 [0] [1] [0]
[0] [0] [1]

−[D3]
−1[D0] −[D3]

−1[D1] [0]


(10)

where [1] contains the unity matrix, (8) can be solved
analytically by use of an exponential integrator. After ap-
plying the mid-point rule again, a propagation algorithm
is achieved [7]:

Π(χi+1) = exp
([

Γ(χi+ 1
2
)
]
∆χ

)
Π(χi). (11)

To reduce the computational burden, the matrix expo-
nential in (11) is approximated by utilizing the first order
Padé approximant [7], [13], resulting in[

[1]−
[
Γ(χi+ 1

2
)
] n ·∆χ

2

]
Π(χi+n)

=

[
[1] +

[
Γ(χi+ 1

2
)
] n ·∆χ

2

]
Π(χi), (12)

with n indicating the times the matrix exponential is
applied. In order to find a closed formulation for all
derivatives in (6), (12) is evaluated for n = 1, 2, 3. By
evaluating each row of (12) by itself, nine equations
are obtained which can be inserted into each other.
After a lengthy calculation and the introduction of the
abbreviation f(χi) = fi the novel approximation of the
third order derivative in χ is obtained

∂3

∂χ3
f(χ)

∣∣∣
χ
i+1

2

→ −fi−2 + fi−1 + 2fi − 2fi+1 − fi+2 + fi+3

4∆3
χ

,

(13)
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hch = 0.4 nm
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Fig. 1. Schematic of the 9-AGNR-FET in the xy-plane (a) and xz-
plane (b).

in addition to the previously known terms from [7] for
the approximation of the first order derivative and zeroth
order term given by:

∂

∂χ
f(χ)

∣∣∣
χ
i+1

2

→ −fi + fi+1

∆χ
,

f(χ)
∣∣∣
χ
i+1

2

→ fi + fi+1

2
.

(14)

After inserting (13) and (14) into (6), one arrives at the
final discrete formulation of the WTE including the first
order non-parabolic corrections:

∂

∂t

fi + fi+1

2

= [D3] ·
−fi−2 + fi−1 + 2fi − 2fi+1 − fi+2 + fi+3

4∆3
χ

+ [D1] ·
−fi + fi+1

∆χ
+ [D0(χi+ 1

2
)] · fi + fi+1

2
.

(15)
After the formulation of (15) for all f1,f2, ...,fNχ

the
right-hand side of the WTE can be rewritten as a
system matrix [7], [13] which is the basis for all further
calculations.

III. Analysis of charge carrier transport in armchair
GNR FETs

A schematic of the armchair GNR (AGNR) FET with
the most relevant device parameters is shown in Fig. 1.
For the carbon-carbon bonds a distance of acc = 0.142 nm
with nearest neighbor hopping energy of t = 2.7 eV and
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Fig. 2. The energy dispersion obtained by a nearest neighbor tight-
binding Hamiltonian is approximated well with the first order non-
parabolic correction from (2) for up to k = kmax = π/(12 · acc),
i.e. one quarter of the distance from Γ to X, whereas the parabolic
approximation deviates significantly.

0 for all other neighbors is used with the effects of edge
bond relaxation being neglected for the sake of simplicity.

The FET consists of a 9-AGNR layer that is located
between two HfO2 films with one layer of hBn in between
as suggested in [10] and controlled via a dual-gate for
which matched work functions are assumed. The relative
permittivities of the AGNR channel, hBn and HfO2 films
are given by εr,GNR = 2.5, εrhBn = 4 and εrHfO2

= 24,
respectively [10]. A fraction of 19 · 10−4 dopants/carbon
atoms is assumed in the drain and source regions.

The coefficients c2 and c4 from (2) are obtained by
fitting to the energy dispersion shown in Fig. 2 which is
calculated by solving for the eigenenergies of the device
Hamiltonian, resulting in c4 = −5.379 · 1049 · m−1

0 and
c2 = 4.663 · m−1

0 for the non-parabolic approximation,
c4 = 0 and c2 = 4.868 ·m−1

0 for the parabolic case and a
band gap of EG = 0.948 eV.

In terms of self-consistency, the charge carrier transport
and Poisson’s equation are solved iteratively until the
Hartree potential of subsequent iteration converges. For
the transient case, the WTE and Poisson’s equation are
solved once per time-step. In order to reduce the compu-
tational effort, the charge carrier transport is calculated
in the xz plane with the assumption of a constant electri-
cal potential in z-direction. The resulting charge carrier
densities are then inserted into Poisson’s equation which
is solved in the xy plane using a finite-difference scheme.
Ballistic charge carrier transport and room temperature
operation are assumed in all cases

For the WTE, a mode-space approach [11] is utilized,
heavily reducing the computational burden. Because Pois-
son’s equation is solved in the xy plane, the subband
profiles are not needed explicitly and are therefore not
calculated. Thus, only the boundary conditions in addition
to the potential term are modified with the subband
energy (i.e. half of EG) being added to the latter. Only the
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Fig. 3. The charge carrier densities obtained through the Wigner
Transport Equation with non-parabolic corrections agree reasonably
well with those of a real space NEGF approach for the same potential.

first conduction subband lowest in energy and closest to
the Fermi level is taken into account. Inflow boundary con-
ditions [12] are assumed at the source and drain contacts.
For the time-resolved simulations, the time derivative on
the left-hand side of (15) can also be expressed in terms
of an exponential integrator which is then approximated
by the application of a Crank-Nicolson scheme [13]. A
discretization width of ∆x = 3acc is used in transport
direction with Nk = 260 equidistant values in phase space
between ±2.6 nm−1. A time step width of ∆t = 2 fs is
used for the transient case.

Regarding the reference approach a real space tight-
binding NEGF method is employed in the xz plane [4].
A lopez sancho algorithm is used to massively speed up
the calculation of the surface energies at the contacts
[14]. Because Poisson’s equation is solved on the same
discretization points in x as the WTE, the potential used
in applying the NEGF is interpolated where necessary.

IV. Results
The charge carrier densities for an exemplary potential

obtained by the WTE and reference approach are shown
in Fig. 3. The results are in good agreement, with the
additional benefit of computation times for the WTE
being less than one hundredth of those of the NEGF
approach. Minor deviations occur naturally due to the
uncoupled mode space approximation that is used, as well
as the difference in the treatment of device boundaries
in the WTE and NEGF approaches. The self-consistent
drain-end current as a function of the drain-source voltage
is shown in Fig. 4 for three different gate voltages along
with the flatband case, where the potential difference
between source and drain is assumed to decrease linearly in
the channel region. As it can be seen, the results converge
well and resemble those of conventional quantum confined
dual-gate FETs. To analyze the time-resolved switching
behavior, the device is modified to Ls = Ld = 13.6 nm and
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Fig. 4. The self-consistent drain-end current densities are shown for
three different gate voltages UG. In addition, results for the flatband
case are compared to those of a NEGF approach, where issues with
convergence arose for the self-consistent case, likely because of the
mismatch between real space charge carrier densities and Hartree
calculations on a uniform grid.
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Fig. 5. The self-consistent time dependent drain-end current shows
significant overshoot effects during the switching process.

Lch = 6.8 nm and the permittivities are increased towards
the contact to reduce issues with the self-consistency at
the contacts. A square signal between 0.3 V and 0.6 V
is applied to the gate contact with a cycle length of 0.8
ps and 50 % duty cycle. To improve the accuracy of the
results, a finite slew rate of 3 V/ps is applied [15]. The
transient evolution of the drain-end current is shown in
Fig. 5. As it can be observed, an overshoot effect occurs
both during on and off switching with the peak drain
current exceeding the steady state current by roughly two
times. The steady state drain-end current is reached after
about 200 fs in both cases.

V. Summary
The phase-space exponential operator scheme for the

WTE has been extended to take energy band non-
parabolicity into account. By comparison to reference
results it is shown that it can readily be applied onto

devices such as AGNR FETs to model the self-consistent
stationary and time-resolved behavior where drain-end
current overshoot is observed during switching processes.
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