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Abstract— Quantum computing is promising in speeding up the 
system of linear equations (SLE) solving process. However, its 
performance is limited by noise. The variational quantum linear solver 
(VQLS) algorithm is expected to be more resilient to noise than gate-
based quantum computing algorithms. This is because error correction 
is not available yet and VQLS is based on cost function minimization. 
In this paper, the gate insulator Poisson equation is solved using 
VQLS. The results are compared to technology computer-aided design 
(TCAD) results and gate-based quantum algorithm results. We show 
that, even without error-free qubits, the IBM-Q quantum computer 
hardware can solve a 2-variable SLE with high fidelity. We further 
demonstrate that, through VQLS simulation, an 8-variable SLE can be 
solved with fidelity as high as 0.96. 
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I. INTRODUCTION 

Quantum computing (QC) is becoming more promising and 
quantum supremacy has been demonstrated in a 53-qubit QC 
system [1]. One of the promising applications of QC is to speed 

up the solving of the system of linear equations (SLE), ��⃗ = ��⃗ , 
in which vector �⃗ is solved for a given matrix, �, and a vector, 

��⃗ . Harrow-Hassidim-Lloyd (HHL) quantum algorithm was 
proposed to find the solution exponentially faster than the 
classical method [2]-[4]. For a give precision, � , the HHL 
algorithm scales polynomially with log� � and 
, where � and 

  are the size and condition number of the problem, 
respectively. However, the HHL algorithm is a gate-based 
model that is very sensitive to noise and error [5]. Since error-
corrected quantum computers are not available yet, one cannot 
even solve a simple 2-variable SLE using the HHL algorithm. 
For example, in [6], the HHL algorithm is used to solve the 
Poisson equation across a gate insulator. The HHL algorithm 
fails to give correct results with the current quantum hardware 
due to the fact that the noise destroys the quantum interference 
used in the algorithm [5][7].  

Therefore, in the noisy-intermediate-scale-quantum (NISQ) 
era where error correction is not available, non-gate-based 
models are more promising. For example, adiabatic quantum 
computing (AQC) has been used to solve SLE up to 8 variables 
experimentally on a nuclear magnetic resonance quantum 
computer [8]. Another approach is the variational quantum 
linear solver (VQLS) algorithm [9]. VQLS is similar and based 
on variational quantum eigensolver (VQE) [10]. It has been 
implemented on a Rigetti superconducting qubit platform for a 
1024-variable SLE [9]. However, the fidelity is not shown while 

it is demonstrated that the cost functions reduce similarly in 
simulation and experiment. The example in [9] is also based on 
a special Ising-inspired matrix, � . Therefore, it is worth 
exploring the performance of VQLS with a technology 
computer-aided-design (TCAD) problem.  

In this paper, using an open superconducting qubit platform 
[11][12], we study the performance of VQLS in solving the 
Poisson equation across gate insulators with 2 and 8 variables 
and compare it to the results using the HHL algorithm.  

II. PROBLEMS TO BE SOLVED 

Poisson equations across two 1-D gate stacks are studied. 
Fig. 1 shows the structures simulated. The first device is a 
Si3N4/SiO2/Si3N4 stack (dubbed SSS) and the second device is a 
SiO2/HfO2 structure (dubbed SH). Both structures are biased at 
2V and are 2nm thick. The Poisson equation is discretized and 
the size of �  is 2×2 for SSS and 8×8 for SH because the 
boundary nodes need not be solved. As a result, they can be 
handled by 1 and 3 qubits respectively in quantum computers. 
The equations are solved in Python 3.10.4 directly, TCAD 
Sentaurus using Newton iteration, and Qiskit for quantum 
computing circuit simulation. SSS is also solved in the ibm_lago 
quantum computer. 

III. VARIATIONAL QUANTUM LINEAR SOLVER (VQLS) 

VQLS holds great potential for overcoming the 
computational complexity limits of classical computers. Fig. 2 
shows a block diagram of how VQLS works when solving ��⃗ =
��⃗ . Firstly, ��⃗  is encoded as |�⟩ through amplitude encoding. This 
is achieved by applying a unitary gate to the ground state |0⟩. 
For example, in the SSS problem, � = � 1 −1/3

−1/3 1 �  and 

*Corresponding author: hiuyung.wong@sjsu.edu 

 
Figure 1: Gate stacks studied in this paper. The top one is dubbed SSS. 
The bottom one is dubbed HS. Mesh points are shown in dots. Color 
legend of each material is shown on top with its relative dielectric 

constant.  
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��⃗ = �0
1�, then |�⟩ = �|0⟩ = �0 1

1 0� �1
0�. Note that this is just 

for finding � to be used in the quantum circuit and �|0⟩ is not a 
part of the quantum circuit. For the SH problem, |�⟩ has 3 qubits 
and is an 8-D vector. |�⟩  is obtained through a variational 
quantum circuit, �(�), applied to the ground state |0⟩. �(�) is 
also called the ansatz. A variational quantum circuit is a 
parametrized quantum circuit. It contains rotation gates (e.g, 
��( ), �!( )) and entanglement gates. The rotation angles are 

used as the parameters. These parameters are denoted as � in the 
figure. Therefore, the goal is to find � such that �|�⟩ = |�⟩ with 
|�⟩ = �(�) |0⟩. Random values are chosen for � as the initial 
values. 

When the solution is found, �|�⟩ and |�⟩ should have the 
maximum overlap. That means ⟨�|�|�⟩ is maximum. Therefore, 
a cost function that depends on �, $(�), is defined based on 
minimizing the trace distance between the subspace normalized 
to |�⟩, i.e. % − |�⟩⟨�|, and �|�⟩, i.e. �|�⟩⟨�|�&, 

$'(�) = ()*+,|�⟩-�|,./012|3⟩⟨3|45
6�7�&�7�8 ,        (1) 

where normalization is performed by dividing the distance by 

⟨�:�&�:�⟩. It can be derived that � can be decomposed into a 

linear combination of ;  unitary matrices �<  with complex 
coefficients cl,  

                                     � = ∑ ><�<?<@A .                                (2) 

 For example, for the SSS problem, � = 1 × % − A
C × D , 

where %  and D  are the identity gate and Pauli-X gate (NOT 
gate), respectively. Finally, the cost function $(�) is derived to 
be, 

$'(�) = 1 − ∑ EFEFG∗ 60I�&�<G
& �I08607�&�<�708F,FG

∑ EFEFG∗ 60I�&�<G
& �<�I08F,FG

,                (3) 

which is called the global cost function [9]. However, it is shown 
that the global cost function can result in Barren Plateaus easily 
in [9]. Therefore, a local cost function is used instead, 

$?(�) = 1 − ∑ EFEFG∗ ⟨J|K.,FG. L�M
N ∑ :JOP-JO:⊗1O

NRMOST �L.,FK|J⟩F,FG

∑ EFEFG∗ 60I�&�<G
& �<�I08F,FG

,         (4) 

where |0⟩⟨0|  in the global cost function is replaced by 
A
U ∑ :0VP-0V: ⊗%V

U2AV@J . %V means that the identity matrix is used for 

qubits other than qubit W (instead of using the outer product of 
the ground state of that qubit). To understand this, we should 
note that �|0⟩⟨0|�& = |�⟩⟨�|. Therefore, by changing to the 
new form, |�⟩ is not calculated “globally”. Instead, each qubit 
of the ground state receives the action of �  “individually” 
(“locally”). 

 The cost function can be computationally intensive using 
classical computers and QC is expected to provide tremendous 
speedup. It can be appreciated that the linear decomposition of 
� enables the direct computation of the cost function through the 
Hadamard test [13]. The Hadamard test is used to compute the 
expectation value of an operator for a given state vector. To 

implement the Hadamard test, we recognize that :0VP-0V: ⊗%V =
1
� + YO⊗1O

� . Therefore, to compute $?(�), we need to compute all 

terms in -0|�&�<G
& �<�|0⟩  and ⟨0|�&�<G

& �ZV ⊗ %V�&�<�|0⟩ .  

Fig. 3 shows the Hadamard test circuit for computing the real 

part of ⟨0|�&�<G
& �Z� ⊗ %��&�<�|0⟩ as an example.  

The cost is then passed to a classical computer to perform 
optimization to choose the next set of �  for the ansatz. This 
continues until the cost is less than a pre-set threshold and 
�(�[\U]<) |0⟩ gives the solution, |�⟩. 

There is also an ancillary qubit required to perform the 
control operation in the Hadamard test (Fig. 2 and Fig. 3). 
Therefore, for the SSS problem, 2 qubits are needed and for the 
SH problem, 4 qubits are needed. 

IV. RESULTS 

Firstly, the SSS problem is run through a VQLS simulator 
with error emulation and it gives a very high accuracy even with 
only 15 optimization steps (Fig. 4). The fidelity, which is 
calculated as the inner product of the true �⃗ and the computed �⃗, 

 
 

Figure 2: Schematic showing the workflow of VQLS. A 3-qubit case is 
shown with one ancilla qubit at the top. This corresponds to the SH 

problem. One of the components of ^(�, �) is shown in Fig. 3. 

 
Figure 3: The Hadamard test circuit (without measurement) for 

computing the real part of ⟨0|�&�<G
& �Z� ⊗ %��&�<�|0⟩ . It can be 

regarded as the test circuit for computing the expectation value of the 

operator �<G
& �Z� ⊗ %��&�<  for state �|0⟩ . Note that no controlled 

operation is needed for �  and �& because it does not affect the results. 
The qubits are numbered from 0 to 3 from the top. Therefore, the top 

qubit is qubit 0. This represents one of the ^(�, �) components in Fig. 2.  
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is 1 with a precision of 15 digits after the decimal. Since it only 
has one qubit, no entanglement can be formed in the ansatz. 
Therefore, the ansatz contains only rotation gates. In Fig. 4, three 
�!(� =  ) are used as the ansatz. Optimizer COBYLA, which 

stands for “constrained optimization by linear approximation” is 
used as the optimizer. COBYLA is a numerical optimization 
method for constrained problems where the derivative of the 

objective function is not known. SparsePauliOp is used to 
decompose � and Qiskit Estimator is used. It is then run using 
IBM quantum computer ibm_lago. Fig. 5 compares the results 
from TCAD, quantum hardware using HHL, and quantum 
hardware using VQLS. It can be seen that while HHL has a 
solution with a large error, VQLS gives a very similar result as 
TCAD. Fig. 6 shows that it can be completed in less than 20 
steps to reach a fidelity of 99% with the hardware. More 
importantly, it is stabilized within a similar number of steps as 
the simulation, which agrees with the observation in [9]. 

Due to limitations in the access to IBM hardware, structure 
SH is studied only with simulation with error emulation in Qiskit 
[12]. Since the hardware result in the SSS case gives a similar 
result as the VQLS simulation, it is believed that the simulation 
of VQLS represents the hardware behavior well. Fig. 7 shows 
the ansatz used in this problem. Entanglement between each pair 
of qubits is applied through the CNOT gates. Fig. 8 shows the 
matrix decomposition of �, which is decomposed into the linear 
combination of 16 unitary gates formed by the tensor products 
of Pauli matrices and identity gate. 

Simulations are conducted many times with different 
random seeds and Fig. 9 shows three of the typical results. 
Firstly, most of the time the results are not satisfactory (e.g. Run 

 
Figure 5: TCAD solution and quantum computing hardware solutions 
(HHL and VQLS) at the 2 middle nodes of the SSS structure. The squares 
of the normalized vectors are compared (which represent measurement 

probabilities in a quantum computer). 

 
Figure 6: Fidelity as a function of optimization step when solving 
the SSS problem using ibm_lago quantum computer. 

 

 
 
Figure 7: The ansatz used in the SH problem. Rotation gates about the y-
axis and controlled-NOT gates as the entanglement gates are used. The 
rotation gates are parameterized with rotation angles. The initial values are 
shown. The circuit goes from left to right on the top row and then the 

second row. 
 

Figure 4: Fidelity and optimization cost of the SSS problem as a function 
of the optimization step using the VQSL simulator implemented with 
Qiskit. 

 

 
 
Figure 8: Matrix _  in the SH problem in Python code (top). It is 

decomposed into 18 unitary gates, �<, (bottom) with the corresponding 

coefficients, ><, shown. 
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A) which has very low fidelity even with 120 steps. Secondly, 
sometimes the fidelity plateaus and cannot be further improved 
(e.g. Run C). The fact that the fidelity of Run C does not further 
improve after ~70 steps might be due to Barren plateaus [14] 
where the solution is stuck at a local minimum. Usually, this 
requires more engineering in the construction of the ansatz 
because Barren plateaus usually occur in large problems when 
there are too many entanglements. However, in this case, it 
appears that one can escape the plateaus with a different random 
seed (Run B). Run B has achieved the highest fidelity of 96%.  

Fig. 10 compares the squares of the components of �⃗ 
obtained by TCAD and VQLS. It can be seen that VQLS gives 
a satisfactory result compared to HHL considering that the 
qubits are not error-corrected and this is an 8-variable problem. 
However, the result is still not enough for TCAD applications. 
This also shows that fidelity alone is not an adequate metrics to 
determine if the solution of a QC is good enough for TCAD 
applications. This is consistent with the finding in [6].   

V. CONCLUSIONS 

In this paper, VQLS is used to solve the Poisson equation on 
two gate stacks, namely a Si3N4/SiO2/Si3N4 stack (dubbed SSS) 
and a SiO2/HfO2 stack (dubbed SH). They represent a 2-variable 
and 8-variable system of linear equations, respectively. We used 
IBM quantum computing hardware to demonstrate that VQLS 
is resilient to errors in unprotected qubits and obtained 99% 
fidelity for the SSS problem. This is much better than the HHL 
algorithm. We then also performed VQLS simulation and were 
able to obtain 96% of fidelity. This shows that VQLS is 
promising although Barren Plateaus need to be avoided in large-
scale problems. 
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Figure 10: Measurement probabilities of each basis state 
calculated using VQLS and by squaring the classical solution. 

 
 
Figure 9: Fidelity as a function of optimization step when solving 
the SH problem using VQLS simulation in different runs. 
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