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Abstract—We propose a qubit device utilizing pseudo magnetic
field generated by strain in zigzag graphene nanoribbon, where
the deformation of graphene generates a pseudo-magnetic field
and thereby localize electronic states. Our simulations based
on the NEGF method have shown that deformation-induced
localized states couple only with the higher subband originating
from bulk graphene when the deformation is small. On the other
hand, a larger deformation enables the localized states to couple
even with the lowest subband originating from the edge states,
leading to significant spin-splittings in the conductance dips and
suggesting potential applications in spintronic devices, including
spin qubit devices.

I. INTRODUCTION

Graphene is a promising material for future electronics for
its high mobility. Graphene can be easily strained due to its
one atom thickness. It is known that changes in the distance
between atoms induce an effective vector potential [1], which
results in a pseudo-magnetic field (PMF). This, in turn, leads to
the formation of Landau levels–discrete energy levels observed
in a magnetic field. Such PMF-induced Landau levels have
also been experimentally observed in a PMF exceeding 300 T
[2]. Electronic devices that utilize the PMF have been proposed
such as FETs [3, 4] and a qubit device [5] so far.

It is also known that carbon-based materials are suitable
for qubit devices due to its small spin-orbit interaction and
hyperfine interaction. To manipulate electrons as qubits, it is
necessary to confine them in a quantum dot (QD) to discretize
their energy levels in a way that can be accessed from
external electrodes. For such purpose, graphene nanoribbons
may be advantageous since they have quasi-one-dimensional
geometries and various conduction characteristics depending
on their edges and width [6]. In particular, zigzag graphene
nanoribbons (ZGNRs) are attractive since the presence of spin-
polarized edge states in ZGNRs [7] is expected to facilitate
spin-selective electron injection from electrodes

Another viewpoint in realizing the qubit device is that it is
necessary to cause the Rabi oscillation of confined electrons
for quantum gate operations. However, AC magnetic field to
induce Rabi oscillation is a challenge due to heating problems
and difficulties to irradiate the local area with magnetic field.
Instead, it is expected that the Rabi oscillation is realized in
the situation that the electrons go back and forth in a magnetic
gradient [8], where the faster quantum gate operations are
expected in a larger magnetic gradient.

With the above mentioned motivation, in this paper we
present a numerical simulation study based on non-equilibrium

Green’s function (NEGF) of the spin-dependent electronic
transport in ZGNRs, where the strain-induced PMF leads to
the QD confined states.

Fig. 1. The calculation model of ZGNR. We set x axis along the transport
direction and the center of the device region is the origin. The semi-infinite
ZGNR is attached to the both sides of the device region. The ripple strain
(deformation) modeled by Eq. (1) is applied to the device region.

II. MODEL AND METHOD

The calculation model of ZGNR is shown in Fig. 1. We set
x axis along the transport direction and y axis the transverse
direction. The origin is the center of the device region. We
denote M the number of atoms along y axis in the device
region and N along x axis, respectively. We choose M = 12
and N = 61, corresponding to the width W = 2.41 nm and
the length L = 7.38 nm. The semi-infinite ZGNR electrodes
are attached to the both sides of the device region. The ripple-
type strain of the ZGNR can by modeled by the Gaussian
deformation, where the displacement along the z direction for
atoms located at (x, y) is given by

uz (x, y) = h0e
− x2

2σ2
x
− y2

2σ2
y , (1)

with the parameters chosen to be σx = 1.5 nm, σy = 1 nm.
The height parameter h0 is treated as controllable parameter
in this study. Then, in the framework of the tight-binding (TB)
Hamiltonian the hopping energy between the nearest neighbor
atoms is modeled as

tij = −t0e
−β

(
dij
a0

−1
)
, (2)

where a0 = 0.142 nm and t0 = 2.8 eV are the atomic
distance and the hopping energy between the nearest neighbor
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atoms in unstrained graphene, respectively, dij is the distance
between nearest neighbor atoms labeled by i and j under the
deformation Eq. (1), and β ∼ 3.37 [9].

We note that the deformation Eq. (1) induces the corre-
sponding in-plane displacements ux,y and thus the strain tensor
εij , which in turn results in the effective vector potential A
as [1, 5] (

Ax

Ay

)
= − βℏ

2ea0

(
εxx − εyy
−2εxy

)
, (3)

with εij being the strain tensor. The corresponding PMF B =
∇×A is shown in Fig. 2.

Fig. 2. The PMF that electrons in the K valley feel in strained ZGNR. The
ripple parameter is chosen to be h0 = 0.5 nm. The magnitude of the PMF
can reach the thousands of Tesla.

For the actual NEGF transport calculation we employ the
TB Hamiltonian for spin σ(=↑, ↓) in the device region as

Hσ
D = HTB + V σ

LSDA. (4)

The first term is the TB Hamiltonian with the hopping energy
Eq. (1). The second term is the spin dependent exchange-
correlation potential within the local spin density approxima-
tion [10–12].

We compute the density of states (DOS) and electron den-
sity self-consistently with the exchange-correlation potential
in the NEGF formalism [12, 13]. The Green’s function in the
device region GD(E) is defined as

Gσ
D(E) = [E −Hσ

D − Σσ
L(E)− Σσ

R(E)]−1, (5)

where ΣL/R(E) is the self energy for spin σ from the left/right
electrode and E = 0 is the Fermi energy. The retarded
self energy ΣL/R(E) is computed by the method proposed in
Ref. [14]. At the ith site position r = ri, the local density of
states (LDOS) for spin σ, Dσ(ri, E), is calculated by

Dσ(ri, E) = −
Im [Gσ

D(E)]ii
π

, (6)

where [Gσ
D(E)]ii is the (i, i) matrix element of Gσ

D(E). The
device DOS is defined as the averaged LDOS,

D(E) =
1

MN

∑
σ=↑,↓

∑
i

Dσ(ri, E). (7)

The spin σ electron density at the position ri is computed by

ρσ(ri) =
1

2π

∫
dE{[Aσ

L(E)]ii f(E − µL)

+ [Aσ
R(E)]ii f(E − µR)} (8)

where f(E) is the Fermi-Dirac distribution function with the
electrochemical potential in the left/right electrode µL/R set to
zero assuming the zero bias limit and the temperature T =
10 K. Aσ

L/R(E) is the spectral function for electrons injected
from the left/right electrode, given by

Aσ
L/R(E) = Gσ

D(E)Γσ
L/R(E) {Gσ

D(E)}† , (9)

Γσ
L/R(E) = i

[
Σσ

L/R(E)− {Σσ
L/R(E)}†

]
. (10)

The spin dependent conductance is obtained by

Gσ(E) =
e2

h
Tr

[
Γσ

RG
σ
D(E)Γσ

L {Gσ
D(E)}†

]
(11)

and the total conductance is calculated by

G(E) =
∑

σ=↑,↓

Gσ(E). (12)

Fig. 3. The band structure of the electrode self-consistently solved for h0 =
0.5 nm. The Fermi energy is E = 0. The bandgap is approximately 0.2 meV.

III. RESULTS AND DISCUSSIONS

The band structure of the electrodes are shown in Fig. 3,
where the finite bandgap approximately 0.2 eV is opened due
to the exchange-correlation potential. We note that although
the spin up and down band structures are identical, the
corresponding wavefunctions differ from each other as will
be shown later. Next we consider the DOS and in the device

Fig. 4. The DOS for h0 = 0.5 nm as a function of energy. Sharp peaks exist
E = ±1.5 eV and E = ±2.0 eV in addition to the van-Hove singularity.
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Fig. 5. The conductance for h0 = 0.5 nm. The conductance dips are observed
at the energy corresponding to the peaks of the DOS.

region with the strain (Gaussian deformation). Fig. 4 shows the
DOS for the deformation height h0 = 0.5 nm in the device
region, where the peaks around E ∼ ±0.1 eV are due to edge
localized states, while those around E ∼ ±1 is due to the
van-Hove singularities seen in quasi 1D system in general.
On the other hand, the additional peaks near E ∼ ±1.5 eV
and E ∼ ±2 eV appear due to the Gaussian deformation,
suggesting the presence of the deformation induced quasi
localized states. Here we note that the localized state, for
instance at E = 1.5 eV is degenerate with the second
conduction subband (originating from bulk graphene band).
As seen in Fig. 5, at the energy E = 1.5 eV the conductance
exhibits a dip, which can be interpreted as the Fano resonance
between the localized state at E = 1.5 eV and the extended
band state. The same discussions can be applicable for other
deformation induced DOS peaks.

Fig. 6. The spin resolved DOS for h0 = 0.5 nm as a function of energy. The
energy splitting between the bonding and anti-bonding states of each spin is
few meV. The splitting between the opposite spin is approximately 10 meV.

In order to understand the DOS peak/conductance dip struc-
ture at E ∼ 1.5 eV more in detail, we show the spin resolved
DOS for h0 = 0.5 nm near E = 1.5 eV in Fig. 6. Here
we can see the spin splitting ∼ 10 meV, and for each spin the
bonding/antibonding energy splitting with the coupling energy
∼ 3 meV is observed. The corresponding spin dependent
conductance Gσ(E) and the conductance spin-polarization
defined by P = (G↑ − G↓)/(G↑ + G↓) are shown in Fig. 7
and Fig. 8, respectively. Here we can see that conductance is
spin-polarized at the energy of the spin-splitted DOS peaks,

Fig. 7. The conductance of each spin for h0 = 0.5 nm near the energy of
the DOS peak around the E = 1.5 eV.

Fig. 8. The conductance spin polarization defined by P = (G↑−G↓)/(G↑+
G↓) for h0 = 0.5 nm. The appearance of the peaks indicates the spin
polarized current.

which can be utilized for applications in spintronic devices.

Fig. 9. The DOS for h0 = 0.85 nm as a function of energy.

In the following, we consider the larger strain (deformation)
case (h0 = 0.85 nm). In Fig. 9, we show the total DOS for
wider energy range −2 ∼ 2 eV. In contrast to the small defor-
mation height of h0 = 0.5 nm (where the deformation-induced
DOS peaks appear within the higher subband originating from
the bulk graphene band), now in the case of h0 = 0.85 nm,
interestingly, additional DOS peaks are observed at E ∼ ±0.9
eV which is within the lowest subband originating from the
edge states (edge state subband). Here it is suggested that a
larger deformation causes spatially more extended localized
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Fig. 10. The conductance near the DOS peaks at ∼ 0.9 eV for h0 = 0.85 nm.
This energy range corresponds to the lowest subband (originating from the
edge states). At the energy of the conductance dip, the perfect spin polarized
transmission is realized.

Fig. 11. The conductance spin polarization for h0 = 0.85 nm.

states, making it possible for them to coupled even with the
edge localized states. Therefore, as shown in Fig. 10, where
we show the spin-resolved conductance near the DOS peaks
at E ∼ 0.9 eV, the conductance exhibit dips due to the
Fano resonance mechanism. We note that there is only one
conduction channel in this energy range, so at the energies
of the spin-splitted conductance dips 100% conductance spin-
polarization is obtained as shown in Fig. 11. We additionally
comment that even for smaller deformation (e.g. h0 = 0.5 nm),
the DOS peaks associated with the edge-state subband can be
observed if the center position of the Gaussian deformation is
shifted along y axis (not shown in this paper).

We finally show the distribution of the spin polarization in
Fig. 12, where the spin polarization ζ(r) is defined by

ζ(r) =
ρ↑(r)− ρ↓(r)

ρ↑(r) + ρ↓(r)
. (13)

As shown in this figure, even if a large deformation h0 =
0.85 nm is applied, one edge is polarized to up spin and the
other to down spin, implying the validity of the interpretation
described above. Moreover, it is implied that the co-existence
of the edge-spin polarization and the edge-dependent PMF
shown in Fig. 2 is the origin of the significant spin-dependent
conductance shown in Fig. 10 and Fig. 11.

Fig. 12. The spatial distribution of spin polarization for h0 = 0.85 nm. The
upper edge is polarized to the up spin and the lower to the down spin.

IV. CONCLUSION

We have proposed a qubit device utilizing pseudo magnetic
field generated by strain in zigzag graphene nanoribbon, where
the deformation of graphene generates a pseudo-magnetic
field and thereby localize electronic states. Our simulations
based on the NEGF method have shown that deformation-
induced localized states couple only with the higher subband
originating from bulk graphene when the deformation is small.
On the other hand, a larger deformation enables the localized
states to couple even with the lowest subband originating from
the edge states. This leads to significant spin-splittings (on the
order of tens of meV) of the QD confined states, conductance
dips, and perfect conductance spin-polarization, as well as
bonding/anti-bonding splitting of a few meV. These findings
suggest potential applications in spintronic devices, especially
better noise resistant spin qubits.
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