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Abstract—This study introduces a novel calibration frame-
work of deep learning model, called Real Time TCAD (RTT)
calibration. The proposed method comprises two steps: the pre-
training step and the transfer learning step. In the pre-training
step, a deep learning model is trained with a large amount
of data generated from the uncalibrated TCAD simulation to
learn the underlying semiconductor physics. During the transfer
learning step, the pre-trained model is fine-tuned with actual
measurements to minimize the discrepancy between the model
predictions and the actual measurements. To prevent overfitting
to the experimental data, we introduce a novel loss function
that enables the model to learn the modified physics while
preserving the underlying TCAD knowledge. The proposed
method significantly reduces both calibration and data generation
time while maintaining high model accuracy. Furthermore, our
method tackles the critical problem of missing values in the data,
which is commonly encountered in practice. Experimental results
on a 28-nm logic process demonstrate the effectiveness of the
proposed method.

Index Terms—Real Time TCAD, Neural Network, Calibration,
Transfer Learning

I. INTRODUCTION

The miniaturization of transistors has led to a significant
increase in development costs. To mitigate these expenses,
many companies have employed Technology Computer-Aided
Design (TCAD) simulations to predict the electrical char-
acteristics of transistors. However, with the emergence of
various multi-dimensional transistors, the utilization of TCAD
occasionally incurs significant time costs, ranging from hours
to days. Therefore, Artificial Intelligence (AI) models that
offer considerable speed advantages over TCAD have garnered
great attention, especially when provided with sufficient data
[1]-[7]. Several studies have attempted to replace the TCAD
simulators themselves [1]-[4]. This study introduces deep
learning to provide an initial solution that assists TCAD in
achieving fast convergence [5]. Additionally, some studies
have also aimed to substitute the compact model for SPICE
simulation [8]-[10].

Nevertheless, these data-driven Al models are vulnerable to
distributional shifts caused by process changes or equipment
variations [11]. In such cases, it is necessary to modify
the existing TCAD models, commonly referred to as TCAD
calibration (see Fig. 1 (a)). Afterward, new training data is
generated from calibrated TCAD. Due to the considerable
time consumption required for these tasks (Fig. 1 (a)), many
companies have not yet aggressively introduced Al. To solve
this problem, this study proposes a novel calibration frame-
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Fig. 1. Illustration of the process flow from the data generation to the
deployment of an Al model. (a) The conventional method must restart the
flow from the beginning when the process changes. (b) The proposed flow can
alleviate the ineffective of iterative calibration and data generation procedures
via transfer learning that we propose.

work leveraging a deep learning model, referred to as Real
Time TCAD (RTT) [1]-[4] calibration, as shown in Fig. 1
(b). It utilizes transfer learning to reduce the gap between
measurements and the RTT model within a shorter calibration
time. The rest of this paper is organized as follows. Section II
details our method for enabling real time calibration. Section
IIT demonstrates the effectiveness of our calibration method
in terms of both accuracy and time efficiency. Section IV
provides a summary of this paper along with a brief discussion
of future directions.

II. METHODOLOGIES

We start by reviewing the RTT models [1] that we employed
to estimate the electrical characteristics. There are two primary
types of the experimental data: major electrical characteristics
such as threshold voltage (V) and current-versus-voltage (I-
V) curve. The former represents the simplest form of data
that is consistently obtainable. In contrast, the latter refers to
the I-V curves, which can provide a wealth of information
but are often unavailable due to the time-consuming nature of
measurement compared to the former. To handle these distinct
data types, we employed two separate model architectures.

Model architecture. The first model is an artificial neural
network consisting of a few fully-connected layers designed to
predict major electrical characteristics (Fig. 2 (a)). The second
model employs a combination of fully-connected layers to map
the input space to a high-dimensional space and Long Short-
Term Memory (LSTM) [12] to capture sequential information,
as illustrated in Fig. 2 (b). This approach takes into account
not only the current voltage step but also the preceding ones.
Therefore, this model enables more efficient training with
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Fig. 2. Illustration of model architectures for the prediction of (a) electrical
characteristics and (b) I-V curves. Model (a) consists of several fully-
connected layers that composes of identical units and uses GELU activation
function [13]. Model (b) combines two distinct layers. The first layer is the
fully-connected layers to elevate the input vector to a high-dimensional vector.
The other is LSTM layers to consider the latent vector as sequential I-V" curve
after reshaping the output vector.

sequential voltage-current data by considering the outcomes
of previous voltage steps [1].

With these models, we describe how to apply the transfer
learning in detail. We propose a novel calibration framework
consisting of two steps, as illustrated in Fig. 1 (b): 1) pre-
training and ii) transfer learning.

Pre-training. The goal of this step is to enable the deep
learning model to learn the underlying semiconductor physics
from the data generated by the TCAD simulator, with minimal
effort. To achieve this, we utilize an uncalibrated TCAD sim-
ulator to generate a substantial dataset for training purposes.
Subsequently, we train the aforementioned two models with
these uncalibrated TCAD data. We denote these pre-trained
models as (f(x;wg)). It is important to note that the TCAD
simulator and its data are NO longer required after this step,
thereby avoiding unnecessary procedures in the conventional
flow, as shown in Fig. 1 (a).

Transfer learning. The objective of this step is to minimize
the discrepancy between the the pre-trained models (f (z; wg))
and actual measurements. This step corresponds to TCAD
calibration, and we hence dub this step as “RTT calibration”.
Different from the previous step (pre-training), we initialize
the weights (w) with those of the pre-trained models (wg), and
then train the models (i.e., the calibrated models, f(z;w.))
with the measurements as follows:

w(i+1) =w(i) —yVwL(w), w(0)=wy,

where ~ denotes a learning rate and L represents a loss
function. In practice, we often consider £ as mean-squared-
errors.

In this step, two significant challenges exist. The first
challenge is that some of the output characteristics are not
measured. This implies that we may need to train the model

with insufficient measurement data, or in some cases, we
may lack any measurement data at all for model training.
The second challenge is the number of measurement data is
typically scarce. As a result, the model may over-fit to the
sparse dataset.

Loss function. If any of the output features that the
model learned are not measured, it is not feasible to train
the model using a conventional loss function such as mean-
squared-error. However, assuming that the model can learn
the relationships between outputs [1], it can infer the missing
outputs from the related ones. To this end, we propose a loss
function that utilizes all existing outputs without discarding
samples containing missing values, formulated as follows:

ﬁmask = (y © ]l(yam) - f(wi) © ]l(y7m))2’
s, 1(a,b)={1’ if azb

0, otherwise,

where y denotes the measurements, ©® represents element-
wise multiplication, and m indicates the masking value used
to assign a predetermined value that represents the missing
data. In this loss function, 1 is used to determine whether
a missing value exists or not. If there is no masking value,
the loss function aims to minimize the difference between the
predicted value and the true one. On the other hand, if the
masking value exists, the predicted output is excluded from
the loss calculation. This approach allows the model to infer
missing values though training by leveraging other training
instances or related outputs.

Additionally, it is imperative to prevent over-fitting of the
model resulting from the limited data availability [14]. Specif-
ically, an over-fitted model often yields inaccurate results
that deviate from the fundamental physics. Therefore, we
incorporate regularization into the loss function to constrain
the updated model weights (w) from deviating significantly
[15] from the pre-trained weights (w, this means underlying
physics that the model learned), as follows:

L= Lmask’ + >\(W - WO)2a

where A represents the regularization strength. As A is a hyper-
parameter for training, we set it to 0.01 in this study. A
higher A encourages the model to learn from the measurements
while strictly adhering to the underlying physics. Conversely,
a lower A\ allows the model to prioritize learning from the
measurements with less strict adherence to the underlying
physics.

III. EXPERIMENTAL RESULTS

In this section, we commence the description of the 28-nm
Logic device. Fig. 3 (a) depicts the input variables for the RTT
models that we control to optimize the performance of the
transistors. Fig. 3 (b) indicates two different output variables:
i) major electrical characteristics (Vr, Ion, SS, and so on) and
ii) I-V curves. We applied our method, the RTT calibration,
to two RTT models for these two types of output data.
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Fig. 3. (a) Illustration and (b) table on input and output variables of 28-nm
p-type MOSFET. Inputs are related to process recipes and initial structures.
Outputs are electrical characteristics of the device.
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Fig. 4. Vr roll-off curve on (a) calibration wafers and (b) test wafers. Numbers
in parentheses indicate the accuracy.

A. RTT Calibration for Electrical Characteristics

In this calibration, we used twenty input variables and seven
output variables, respectively. A total of 1,000 data points were
generated from the uncalibrated TCAD simulator and used to
train the RTT model, as shown in Fig. 2 (a). As a consequence
of the first step, the accuracy of the pre-trained RTT model
surpassed 99%. Then, we conducted experiments with various
input conditions, including implantation doses across different
gate lengths on the wafers.

Calibration results. As indicated in Fig. 4, the results of
the pre-trained RTT model (uncalibrated TCAD results) are
inconsistent with experiments. In this scenario, we always
perform TCAD calibration tasks. Hence, we proceeded with
the calibration of two models: i) TCAD simulator (manual
calibration by a TCAD expert) and ii) RTT model (conducting
transfer learning, as described in Sec. II). In the case of
TCAD calibration (Fig. 4, solid red line), the TCAD expert
calibrated the TCAD simulator solely at the design length
(minimal length) due to time constraints. As a result, the
TCAD calibration results aligned well with the measurement
for the design length, whereas those for other lengths exhibited
lower accuracy as anticipated, as depicted in Fig. 4 (a). In
contrast to TCAD calibration, the results of transfer learning
(Fig. 4, solid blue line) are consistent with the measurements
across the whole lengths because these data were used in
training. We can use all the data since our framework exhibits
superior time efficiency. Fig. 5 demonstrates that our approach
can reduce calibration and data generation time by 99.9% in
cases where the process has been changed.
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Fig. 5. Comparison of time consumption between TCAD calibration and
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Fig. 6. Ipsar-Vgs data of two different wafers for (a) calibration and (b)
test. For comparison, we employed 50 regular intervals of voltage (AVgs) on
the x-axis. The left y-axis represents the linear scale of Ipgar, while the right
y-axis represents the logarithmic scale.

Test results. Next, we conducted experiments on the next
wafers to evaluate two calibrated models: the TCAD and RTT
models. As expected, both models exhibited good agreement
with the experiments at the design length (Fig. 4 (b)). How-
ever, across the overall lengths, the results from the calibrated
RTT model exhibited a closer alignment with the experimental
data compared to those from the calibrated TCAD model.

B. RTT Calibration for Current-Voltage Curve

The input variables are identical with electrical characteris-
tics, but the output variables are the drain current, composed
of fifty voltage steps. In this experiment, we trained the
RTT model, shown in Fig. 2 (b), with 1,000 uncalibrated
TCAD data points. The accuracy of the pre-trained RTT model
exceeded 99% when compared to the TCAD simulator. The
experimental data for calibration and testing are same input
condition of previous experiments. The predictions of the pre-
trained RTT model deviated from the experimental data (Fig.
6 (a), red triangles).

Calibration results. To reduce this gap, we calibrated the
pre-trained RTT model (Fig. 2 (b)) with experimental data
through transfer learning. Consequently, the predictions of the
calibrated RTT model closely align with the experimental data,
as shown in Fig. 6 (a). In this scenario, we did not calibrate the
TCAD simulator to the measurement due to time constraints.

Test results. We conducted experiments on subsequent
wafers, identical to the assessment of the RTT model for
electrical characteristics. As depicted in Fig. 6 (b), our result
nearly overlaps with the experimental I-V curve on both
linear and logarithmic scales. This indeed suggests that our
calibration methodology using the RTT model effectively
functions within a limited time frame.
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Fig. 7. (a) Description when some of output features are skipped. (b) An
accuracy plot of all outputs according to the ration of missing values. £, sk
enables the RTT model to fully utilize the data although 50% of data are
missing values.

C. Missing Value Problems

It is frequently observed that some of the output character-
istics are not measured. For example, we often omit measuring
the electrical characteristics at low drain voltage to reduce time
expenses, as they are considered less important compared to
the high voltage characteristics. In such cases, the conventional
approach is to remove samples that contain missing values.
However, this approach leads to a substantial decrease in
the amount of training data, which often deteriorates the
performance of the model. As a result, the model may predict
inaccurate outcomes that deviate from the underlying physics.
In contrast to this conventional approach, our method utilizes
a novel loss function (L,,qs%) that enables the model to be
trained using all samples, including those that contain missing
values. To assess our method, we assume two scenarios: i) half
and ii) all of electrical characteristics in case that drain voltage
is low, are not available (Fig. 7 (a)). Fig. 7 (b) shows that our
method performs well even when half of the data is missing.
Compared to the conventional method (sample removal), our
method improves accuracy by 52% points. Moreover, even
when all data contain missing values, our method still achieves
high accuracy, whereas the conventional method fails to do so.

IV. CONCLUSION

This article proposes a simple yet effective method to reduce
expenses for calibration and data generation when process
changed. By eliminating inefficient procedures, it can reduce
the time expenses by almost 99.9%, while maintaining high
model accuracy. In particular, our method can be applicable to
tasks where some features of the measurements are unavail-
able. This feature can improve data efficiency by up to 52%.
Although this work yielded promising results, we could not
conduct extensive experiments due to the limited number of
wafers. As a result, it cannot be guaranteed that the calibrated
RTT model fully covers all areas of interest. Therefore, future
work will focus on assessing the coverage of the model and
exploring methods to expand its applicability.
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