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Abstract—Qubit readout is one of the most important 

operations in quantum computers. In superconducting quantum 

computers, the success of readout depends on many parameters 

and is difficult to optimize due to the high dimensionality of the 

problem. In this work, a rapid simulation framework that 

comprises an analytical model, a neural network (NN), and 

optimizers using the NN as a surrogate model is proposed. The 

analytical model is calibrated to the experimental result and 

allows rapid simulations to generate enough data to train NNs. 

Single and multi-objective optimizations are performed. It is 

shown that a better solution can be found using the optimizer than 

human optimization. Moreover, the framework can find designs 

with out-of-the-training-range parameters.  
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I. INTRODUCTION 

Qubit readout is one of the most important operations in 
quantum computers (among qubit initialization, qubit state 
manipulation (i.e. quantum gates), and others) [1]. The success 
of most quantum algorithms depends on the readout accuracy 
(fidelity). In superconducting-based quantum computers, which 
are one of the most promising quantum computing architectures 
[2], qubit readout is realized by coupling a qubit to a resonator 
for dispersive readout [3]. The resonant frequency shifts based 
on the state of the qubit (|0⟩ and |1⟩). The shift is called the 
Cross-Kerr [4]. In this paper, we denote the total shift (difference 
between the |0⟩ and |1⟩ induced shifts) as �  (instead of 2�) 
Usually, the readout pulse is applied at a frequency, � , to 
distinguish the state of the qubit by observing the Re/Im parts of 
the transmitted pulse through the resonator. The 
distinguishability of the |0⟩ and |1⟩ states depends on �, �, the 
readout pulse power (�), duration (	
), the resonator scattering 

matrix, and the noise from the circuits. It is important to co-
optimize � , �, �, 	
 , and the resonator design to achieve the 

highest speed, least disturbance to neighboring qubits, and 
highest accuracy. However, this is a very difficult high-
dimensional optimization problem. In this work, based on the 
framework in [3], a rapid simulation framework that comprises 
an analytical model of the resonator, a neural network (NN), and 
optimizers using the NN as a surrogate model is proposed. The 

analytical model is calibrated to the experiment result in [3]. 
This allows rapid simulations to generate enough data to train an 
NN to perform inverse design using an optimizer. 

II. OVERVIEW AND CALIBRATION OF THE FRAMEWORK 

The quantum computer readout system being modeled is 
controlled by Quantum Machine OPX with a nominal readout 

pulse with � = -47 dBm and 	
 = 3.5µs. The nominal readout 
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Figure 1: The optimization framework. Top: the simulation framework in 
[3] with S21 replaced by analytical calculation (red box) to rapidly 
generate training data. Bottom: The trained NN is used as a surrogate 

model for the optimization algorithm.  
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frequency is taken at � = 7.2525341GHz which is the mid-point 
of the total dispersive shift in the model in [3]. After the 
attenuators and due to the attenuations in the cables, the power 
is measured to be -123 dBm when it reaches the resonator. In the 
following, � is expressed relative to -123dBm. Noises from the 
amplifiers and quantum noises due to photon fluctuation and the 
quantum-limited amplifier are modeled as white noise with the 
corresponding noise temperatures. Particularly, the quantum 
noise temperature is found to be 0.5K. The details of the 
quantum computer and noise modeling can be found in [3]. 

The framework is shown in Fig. 1. Unlike [3], HFSS 
simulation of the resonator S21 is replaced by an analytical 

model, �
� = �
����� �

�����
� �

, where �� is the resonant frequency. 

This saves hours, if not days, of simulation and design time for 
each resonator. To verify that this approach is valid, Fig. 2 shows 
that the real and imaginary parts of the 3D resonator S21 in [3] 
can be matched well with � = 70,000 (nominal value) and � =
0.77. It is then used in the simulator to predict the readout error 
as a function of readout pulse energy (relative to -123dBm) for 

�=150,000Hz (nominal value). Fig. 3 shows that it matches the 
experiment and the simulator with HFSS well. 

III. DATA GENERATION 

 Using the new simulator with the analytical S21 model, 4266 
simulations with different sets of parameters (� , �, �, 	
 , �) 

are completed within 3 days on 100 cores. �  (±20%), 
�(±72"#$ which is ±40% of the maximum �), � (-4dB to -
8dB), 	
 (±40%), and � (±20%) are varied in the simulations 

about the aforementioned nominal values. In each simulation, 
200 runs with random noise are performed to get the readout 
error for the corresponding set of parameters. Plotting the errors 
against different variables helps enhance the understanding of 
the trade-offs. For example, Fig. 4 shows the error as a function 
of � and 	
 when the nominal values of other variables are used. 

It shows that � = -5dB and 	
= 3.85µs is the most optimal point 

that can achieve a 0% error. As another example, Fig. 5 shows 
that the error is not monotonically dependent on the readout 
frequency. There is a peak around which the error is maximum 
for a constant power (≤ -5dB). Therefore, to explore non-trivial 
trends and perform optimization, NN and optimization are 
required.  

 
 

Figure 2: Comparison between the real and imaginary parts of the 
resonator S21 using HFSS and the proposed analytical model. 

 
 

Figure 3: Comparison between experimental readout error in [3] and 
simulation readout errors using HFSS S21 and analytical S21 as a function 
of readout pulse power relative to -123dBm. Note that the non-zero error 
at high power (e.g. -2dB) in experiment is due to other sources such as 
state preparation errors which are not captured in this framework. 2000 

simulations are performed for each data point. 

 
 

Figure 4: Readout error as a function of pulse power (P) and pulse width 

(tp) when nominal Q, �, and F are used. 

 
Figure 5: Readout error as a function of pulse power (P) and readout 

frequency (offset to the nominal value) when nominal Q and � are used 

with tp = 3.85µs. 

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 14:06:28 UTC from IEEE Xplore.  Restrictions apply. 



IV. OPTIMIZATION AND INVERSE DESIGN 

 An NN is created using PyTorch [5] to correlate the 5 
parameters to the error using the 4266 data points. It contains 1 
input layer, 2 hidden layers (both have 128 hidden nodes with 
ReLU activation), and 1 output layer (ReLU activation) (Fig. 1). 
ReLU is used as the output activation function, instead of linear 
activation, to enforce the constraint of positive readout error. 
The Adam optimizer is used with an initial learning rate of 10-2 
and mean squared error is used as the loss function. 
ReduceLROnPlateau is also used to train the model faster by 
decreasing the learning rate when it plateaus. The minimum 
learning rate is set to 10-5. A batch size of 128 is used and the 
training is set to run for 150 epochs. To train the model and 
perform hyperparameter tuning, the dataset of 4266 data points 
is split into a train (80%), validation (10%), and test set (10%). 
These datasets are all normalized before input into the NN. The 
NN achieves an R2 of 0.97 on the validation set and an R2 of 
0.96 on the test set (Fig. 6). 

The NN is then used as a surrogate model for single-
objective and multi-objective optimizations. For single-
objective optimization, the sole objective is to find the 
parameters that will minimize the readout error. Single-
objective optimization is performed using the differential 
evolution algorithm from SciPy [6] to perform inverse design. 

The differential evolution algorithm does not use gradients to 
find the minimum but uses a population-based search algorithm. 
One may limit the bounds/ranges of the parameters the optimizer 
can search for. As a baseline, the bounds are first set to be the 
same as the bounds used to generate the data (dubbed “Within-
Range” which means within the parameter range of the training 
data). The optimizer is then run 10 times with a different seed 
each time to obtain a variety of possible solutions. These 
proposed solutions are then run in the simulation framework for 
verification. 

An additional study is further conducted which allows the 
optimizer to search outside the parameter range of the training 
data (dubbed “Out-of-Range”). The bounds used in the “Out-of-
Range” study are set as � (±30%), �(±108kHz), � (-10dB to -
2dB), 	
 (±50%), and � (±30%). In the study, each of the five 

parameters is allowed to have an “Out-of-Range” search while 
the other four are limited to the “Within-Range” search. Then 
each optimizer run consists of running the differential evolution 
algorithm 10 times with a different seed each time.  

The results of “Within-Range” and “Out-of-Range” are 
shown in Fig. 7. It plots the difference between ML/optimizer 
error prediction and simulation error. It can be seen that when 
the optimizer is allowed to search outside of the training data 

 
 
Figure 6: Comparison of the error predicted by the NN and the simulated 

error for both the training and validation sets. 

 
Figure 7: Single-objective optimization results of the error difference between ML and simulation against a desired parameter. Orange: Within-Range 

prediction. Blue: Out-of-Range prediction. Vertical dashed lines show the parameter ranges (Red: Within-Range; Blue: Out-of-Range). 

 
 

Figure 8: Multi-objective optimization solutions for bounds (a) “Within-
Range” and (b) “Out-of-Range”. All points represent a predicted readout 

error of 0. 
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parameter ranges, it can still find good designs (0% error) with 
“Out-of-Range” parameters.    

Multi-objective optimization (minimizing �, 	
, and readout 

error concurrently) is then performed to determine if other 
conditions could be met that would lead to a more performant 
design. The multi-objective optimization is performed using 
NSGA-II from the Pymoo library [7]. NSGA-II (Non-dominated 
Sorting Genetic Algorithm II) is a type of multi-objective 
evolutionary algorithm [8]. The population size is set initially to 
1000 and the algorithm is run for 200 generations. Both “Within-
Range” and “Out-of-Range” optimizations are conducted as the 
single-objective optimization. However, in the “Out-of-Range” 
case, all parameters are allowed to be searched out of the training 
range simultaneously. The optimization algorithm is then run, 
and many solutions are obtained that either prioritize 
minimizing power, width, readout error, or all of them. Fig. 8 
shows the predicted solutions obtained from optimization and 
how certain points are more optimized to certain criteria than 
others. Note that these points all represent a predicted readout 
error of 0, but the optimization is able to also predict points with 
higher readout error if desired.  

The solutions with a predicted readout error of 0 from Fig. 8 
are then chosen for verification in the simulator. Fig. 9 shows 
the differences between the readout error predicted by 
ML/optimizer and simulation. The differences are larger than 
single objective optimization, particularly for the “Out-of-
Range” case. However, it still can find a design with only 0.5% 
error with minimal � and 	
, which may reduce the disturbance 

to adjacent qubits and speed up the readout process. This point 
has the following parameters, �  = 122,932Hz, � = 
7252534102Hz, � =-4.8dB, 	
 =2.1µs, and � =71603. Fig. 10 

shows the IQ distribution of this optimal design simulated. It 
can be seen that the optimizer is able to provide a very optimal 
design as the two “blobs” just touch each other. Another 
simulation using the same �=-4.8dB, 	
=2.1µs but with other 

parameters using nominal values (which may be achieved 
manually) is also performed. Fig. 10 shows that it has an error 
of 1.5%. Moreover, the separation of the “blob” centroids is 
larger in the optimizer case. 

V. CONCLUSION 

A rapid inverse design and optimization framework has 
been demonstrated for superconducting qubit readout. It 
combines an analytical model, NN, and optimization 
algorithms. Both single-objective (differential evolution) and 
multi-objective optimization (NSGA-II) are performed. It can 
optimize a 5-dimensional parameter space within 3 days 
(including data generation) to find a design that is difficult to 
obtain manually. 
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Figure 10: IQ-distribution plots of the inversely designed system by the 
proposed multi-objective optimization framework (Left) and by manual 

optimization (Right) for reading |0⟩ and |1⟩ states. 

 
 

Figure 9: Multi-objective optimization results for the readout error 
difference between simulation and ML/optimizer when the optimizer 
bounds are set either within the training range or out of the training 

range. 
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