
Neural Drift-Diffusion Model
Based on Operator Learning in Fourier Space

Kyeyeop Kim, Sanghoon Myung*, Yunji Choi, Gijae Kang, Kyungmi Yeom,
Songyi Han, Jaehoon Jeong, and Dae Sin Kim

Computational Science and Engineering Team, Innovation Center, Samsung Electronics
Email: *shoon.myung@samsung.com

Abstract—We present a novel neural drift-diffusion model that
aims to emulate the process of solving the drift-diffusion equation.
By utilizing Fourier neural operators, the model learns the
underlying physics of the drift-diffusion equation and accurately
predicts device characteristics. Our approach stands out from
previous studies by representing the learned principle as a
generalized Green’s function in Fourier space, which maps
between the solutions of the initial and the next biases. This
capability allows our model to provide precise solutions even with
unseen inputs in terms of doping profiles or biases.

Index Terms—Drift-diffusion, Partial differential equations,
Operator learning, Neural operator, Fourier space

I. INTRODUCTION

As the complexity of semiconductor fabrication processes
has increased due to miniaturization, the cost of process
development has risen. To minimize the cost, many industries
have thus employed Technology Computer-Aided Design
(TCAD) simulation that provides a cost-effective means of pre-
designing devices and predicting their electrical characteristics.
Nevertheless, the growing complexity of three-dimensional
(3-D) devices has led to escalated computational expenses
and reduced convergence rate in TCAD simulations [1], [2].
To address these issues, numerous studies have attempted to
introduce deep learning techniques through various approaches
[3]–[12]. However, these methods usually tend to memorize
patterns in the data rather than fulfilling the fundamental role of
the solver, leading to poor accuracy in particular extrapolation
case. To mitigate this issue, we present a neural drift-diffusion
(NDD) model aimed at solving the drift-diffusion (DD) equation
precisely. The rest of this paper is divided into the following
sections. Section II describes a generalized Green‘s function
and introduces NDD model that can learn the generalized
Green‘s function. Section III shows experimental results that
NDD model can successfully solve drift-diffusion equation
and be compatible with TCAD. Section IV summarizes our
contribution.

II. METHODOLOGIES

A. Preliminaries

In the realm of semiconductor device modeling, TCAD
device simulators play a crucial role in predicting the electrical
characteristics of various devices by solving nonlinear partial
differential equations (PDEs), commonly known as the DD

equation. Due to the inherent non-linearity, it is not feasible to
solve the DD equation directly. Therefore simulators must rely
on numerical methods such as the Newton-Raphson method
to approximate the solutions. The Newton-Raphson method
is an iterative technique that seeks to find the solutions of a
given function by linearizing the function around an initial
guess and iteratively improving the guess until a desired level
of accuracy is achieved. This iterative solving process can be
described as follows:

u(r) = u(ϕ, n, p;N)(r), r ∈ Ω

L(ui+1)(r) = ui(r), r ∈ Ω

B(u)(r) = h(r;V ), r ∈ δΩ, V ∈ Rn

(1)

where u represents a coupled solution of the DD equation that
includes the electrostatic potential ϕ, electron density n, and
hole density p, all dependent on the given doping profile N . The
DD operator L maps the initial solution ui to the next solution
ui+1 within the domain Ω. The boundary operator B maps the
solution u to the boundary function h at the boundary δΩ of
the domain. In this case, we set h as the Dirichlet boundary
condition, as TCAD simulators typically solve the DD model
according to the constant voltages V applied to n contacts
such as the drain, source, and gate.

B. Neural drift-diffusion model

As evident from Eq. (1), the solution is heavily dependent
on the initial solution. In other words, it is crucial to obtain an
appropriate initial solution. However, it is challenging to guess
the initial solution except for the equilibrium state. Previous
works [6], [7] have therefore employed deep learning models
to suggest good initial solutions to TCAD simulators. However,
these approaches may over-fit the pattern of the data rather
than performing the fundamental role of the solver, leading
to errors beyond the training range. To address this problem,
we aim to enable the model to learn the solver’s role through
operator learning. The solution u in Eq. (1) can be obtained
by utilizing the generalized Green’s function as follows:

ui+1(r) =

∫
Ω

ui(ξ)G(r, ξ)dξ

+

∫
Ω

∇ · (hi+1(ξ)∇G(r, ξ))dξ,
(2)

20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

im
ul

at
io

n 
of

 S
em

ic
on

du
ct

or
 P

ro
ce

ss
es

 a
nd

 D
ev

ic
es

 (S
IS

PA
D)

 |
 9

79
-8

-3
31

5-
16

35
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

SI
SP

AD
62

62
6.

20
24

.1
07

33
12

7

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 13:58:46 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Illustration of the architecture of (a) NDD and (b) Fourier neural operator block that is induced to learn the knowledge in Fourier space.

where G is so-called generalized Green‘s function. The general-
ized Green’s function (G), if accessible, would enable an easy
mapping of the inputs (ui, N , and hi+1) to the next solution
(ui+1). However, acquiring G poses a significant challenge. We
hence employ a deep learning model that can learn this G from
data. In Eq. (2), if G satisfies the property G(r, ξ) = G(r − ξ),
the kernel integral operation can be transformed into a linear
operation in the Fourier space.

ui+1(r) ≃ F−1(F(G) · F(ui ⊕ hi+1))(r)

≃ F−1(F(Ĝθ) · F(ui ⊕ hi+1))(r)
(3)

Capitalizing on this property, we design the NDD model that
can approximate the G with Ĝθ in the Fourier space. Fig. 1 (a)
illustrates an overall architecture of NDD model that utilizes
the Fourier Neural Operator (FNO) blocks [13] in iterative
manners, including three modules: i) solution encoder, ii) bias
encoder, and iii) solution decoder.
Fourier neural operator. Fig. 1 (b) shows an architectural
detail of the FNO block. Each FNO block transforms the input
vectors into Fourier space using Fast Fourier Transform (FFT,
F ) [14], computes the parameters (θ), and subsequently returns
the output vector after performing the inverse FFT (F−1).
The stacked FNO blocks approximate the generalized Green’s
function (Ĝθ). In this work, we convert unstructured meshes
into structured ones featuring uniform intervals to facilitate
the training process [7]. Thus, the solutions are limited in the
regular grids, so that Fourier and inverse Fourier transforms
can be conducted with low costs by FFT algorithm [13].
Solution encoder. The initial solution (ui) and the doping
profile (N ) are encoded by the solution encoder. This encoder
serves to elevate an input vector to the high-dimensional
representation. In our implementation, we use few fully-
connected layers to fulfill this function.
Bias encoder. The next biases (Vi+1) are encoded by the bias
encoder. The bias encoder is responsible for lifting Vi+1 to
the high-dimensional representation and concatenate it to an
output of solution encoder similar to the solution encoder. This

high-dimensional representation can function as the boundary
condition (hi+1). It is important to note that the bias differences
(∆V ) between neighboring steps is limited to a constant during
the training phase. We thus eliminate bias of previous step (Vi)
to avoid redundancy.
Solution decoder. This module aims to decode the latent of
ui. In this work, we employ a couple of fully-connected layers
to aggregate the output vector of the last FNO block to ui+1.

III. EXPERIMENTS

In this section, we evaluate the effectiveness of the NDD
model. In particular, we emphasize the importance of extrap-
olation in evaluating the model’s performance as a partial
differential equation (PDE) solver, as previous works are
inherently limited to interpolation tasks [6], [7], [12]. The
interpolation accuracy of the trained NDD model was also
above 0.99.

We first describe the fabricated process and the data used
for training in Section III-A. Next, we assess whether NDD
model can handle input conditions that has never encountered
during the training. In Sec. III-B and III-C, we conduct an
extrapolation test with respect to doping and voltage conditions,
respectively. Finally, Sec. III-D test whether the solutions
obtained by the NDD model converge well in the TCAD
simulator.

A. Experimental Environment

In this study, we conducted experiments on n-type metal-
oxide-semiconductor field-effect transistors (MOSFETs) fabri-
cated in a 28-nanometer (nm) process (Fig. 2(a)). To generate
the training data, we utilized an in-house TCAD simulator
(Polaris), varying the doping profile and applied biases, as
shown in Table I.

For the training dataset, we modified the doping profile
solely by adjusting the conditions of the lightly doped drain
(LDD) and channel implantation during the process simulation
(Fig. 2 (b)). In contrast, for the test dataset, we varied the
doping profile based on the conditions of halo implantation

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 13:58:46 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. (a) Description on 28-nm n-type MOSFET. Illustration how to vary the
ion-implantation for (b) in-training and (c) out-of-training data, respectively.

TABLE I
DESCRIPTION OF EXPERIMENTAL SETUP. THE EXPERIMENTAL SETUP

INVOLVES VARYING DOPING PROFILE, GATE BIAS, AND DRAIN BIAS. THE
TEST DATA ARE POSITIONED IN AN UNSEEN DOMAIN REGION.

Train dataset Test dataset
Variation # Variation #

Doping profile
(N )

LDD
Channel 1000 Halo 10

Gate bias
(VGS) 0.05∼1.0 [V] 20 -0.45∼0.0 [V] 10

Drain bias
(VDS) 0.05∼1.0 [V] 20 -0.45∼0.0 [V] 10

(Fig. 2 (c)). The numbers of doping profiles in the training
and test datasets were 1,000 and 10, respectively. In addition
to the doping profiles, we also varied the drain bias (VDS) and
gate bias (VGS). For the training dataset, the biases were set
at intervals of 0.05 volts [V], ranging from 0.05 [V] to 1 [V],
respectively. The test dataset varied from -0.45 [V] to 0.0 [V].
As a result, the total number of training and test data points
amounted to 400,000 and 1,000, respectively.

With the training dataset, we trained the NDD model to
ramp up a regular bias step of 0.05 [V]. The parameters (θ) of
the NDD model were optimized to align the predicted solution
(ûi+1) with the results of TCAD simulator (ui+1) at the next
bias.

B. Extrapolation on Doping Profile

As aforementioned above, NDD model was exclusively
trained to recognize changes in LDD and channel implantation.
Consequently, we subjected the model to the unseen doping
profiles that modify the halo implantation. The test experiments
were conducted on ten such unseen doping profiles. The target
solutions for VDS ranging from 0.05 [V] to 1.0 [V] were
predicted from the previous solutions for VDS ranging from
0.0 [V] to 0.95 [V], with a fixed VGS spanning from 0.0 [V]
to 1.0 [V]. Similarly, the target solutions for VDS ranging from
0.05 [V] to 1.0 [V] were predicted. The accuracies of the
extrapolated solutions for the target VDS and VGS were found
to be 0.98 and 0.99, respectively. Fig. 3 depicts a comparison
between the TCAD and the NDD solutions for an unseen
doping profile at 0.05 [V] of VDS and 0.0 [V] of VGS. The
figure demonstrates that the NDD model can predict solutions

Fig. 3. Comparison of solutions between TCAD and the NDD model when
presented with an unseen doping profile as input. Both solutions for electrostatic
potential, electron, and hole density are indistinguishable.

Fig. 4. (a) Comparison of (a) ID-VG and (b) ID-VD curves. Green and red
indicate the regions of interpolation and extrapolation for NDD, respectively.

nearly identical to the TCAD results for the previously unseen
doping profile.

C. Extrapolation on Bias

Because the NDD model was trained from 0.05 [V] to 1 [V],
we assessed whether our method can present accurate solution
out-of-training range or not. We therefore applied the reverse
biases to the VGS and VDS respectively, then incrementally
increased the each bias. The solutions for VGS ranging from
-0.45 [V] to 0.0 [V] were predicted from the initial solutions
for VGS varied from -0.5 [V] to -0.05 [V] and 1.0 [V] of VDS.
Similarly, the solutions for VDS from -0.45 [V] to 0.0 [V] were
predicted. The accuracy of the extrapolated solutions for the
target VGS and VDS is 0.94 and 0.99, respectively. To validate
the accuracy of our model, we solved the DD model using
the predicted solutions as the initial guess with our in-house
TCAD simulator (Polaris) and extracted the drain current. Fig.
4 demonstrates that the NDD model can accurately calculate
the solutions for the untrained biases of (a) VGS and (b) VDS,
respectively. Especially, Fig. 4(a) shows that our model can
accurately predict the Gate-Induced Drain Leakage (GIDL)
phenomenon under the unseen negative gate bias.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 13:58:46 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. (a) Convergence rate of TCAD and NDD. (b) An example of ID-VG

curve showing NDD can calculate ID-VG curve even if TCAD cannot.

D. Replacement of TCAD operation with NDD

TCAD simulators often solve the drift-diffusion equation
starting from zero bias (i.e., thermal equilibrium) and then
gradually increase the applied bias to the target. However,
TCAD simulator often fails to solve DD equation due to the
mesh quality. In fact, during the generation of the TCAD
dataset, only 78 % of the calculations achieved convergence
(Fig. 5 (a)). Leveraging the capability of NDD model that can
directly solve DD equation, we were able to subject the model
to solutions that TCAD simulators were unable to find. Indeed,
with the aid of the NDD model, TCAD simulators can now
solve the DD equation at the desired bias conditions that were
previously not converged. Fig. 5 (b) shows that NDD model
could succeed even for previously failed bias points, and the
convergence rate of NDD became 100 % as shown in Fig. 5
(a).

IV. DISCUSSION AND CONCLUSION

We have shown that the NDD model can accurately ex-
trapolate to the unseen doping profiles and applied biases.
The accuracy of extrapolation has been significantly enhanced
by introducing operator learning through Fourier space and
carefully considering boundary conditions. Our finding has
established the potential for deep learning models as alternative
of TCAD simulator burdened by high computational costs.
However, some challenges persist in fully substituting it with
a deep learning model. First, it suffers inefficiency due to the
limitation of inputs confined to regular grids. Integration of
graph-based deep learning models [12] with the NDD model
is expected to alleviate inefficiencies by directly utilizing mesh
information as input. Secondly, the NDD model is limited to
predicting steady-state solutions and cannot infer transient-state
solutions. To address this issue, we propose expanding the NDD
model to learn time-dependent partial differential equations.
Finally, the model necessitate retraining when processes change
or new processes are introduced. We believe that retraining
issue are addressed by combining NDD model with transfer
learning [15], [16] or meta learning [17]. These studies will
be left for future research.

REFERENCES

[1] A. Toselli and O. Widlund, Domain Decomposition Methods -
Algorithms and Theory, ser. Springer Series in Computational
Mathematics. Springer Berlin Heidelberg, 2006. [Online]. Available:
https://books.google.co.kr/books?id=h7EVoI2g1nkC

[2] H. Koshimoto, H. Ishimabushi, J. Yoo, Y. Kayama, S. Yamada, U. Kwon,
and D. S. Kim, “Gummel-cycle algebraic multigrid preconditioning for
large-scale device simulations,” in 2020 International Conference on
Simulation of Semiconductor Processes and Devices (SISPAD), 2020, pp.
51–54, doi: https://doi.org/10.23919/SISPAD49475.2020.9241643.

[3] C. Jeong, S. Myung, I. Huh, B. Choi, J. Kim, H. Jang, H. Lee, D. Park,
K. Lee, W. Jang et al., “Bridging tcad and ai: Its application to semicon-
ductor design,” IEEE Transactions on Electron Devices, vol. 68, no. 11,
pp. 5364–5371, 2021, doi: https://doi.org/10.1109/TED.2021.3093844.

[4] K. Mehta and H.-Y. Wong, “Prediction of finfet current-voltage and
capacitance-voltage curves using machine learning with autoencoder,”
IEEE Electron Device Letters, vol. 42, no. 2, pp. 136–139, 2021, doi:
https://doi.org/10.1109/LED.2020.3045064.

[5] H. Dhillon, K. Mehta, M. Xiao, B. Wang, Y. Zhang, and H. Y. Wong,
“Tcad-augmented machine learning with and without domain expertise,”
IEEE Transactions on Electron Devices, vol. 68, no. 11, pp. 5498–5503,
2021, doi: https://doi.org/10.1109/TED.2021.3073378.

[6] S.-C. Han, J. Choi, and S.-M. Hong, “Acceleration of semiconductor
device simulation with approximate solutions predicted by trained neural
networks,” IEEE Transactions on Electron Devices, vol. 68, no. 11, pp.
5483–5489, 2021, doi: https://doi.org/10.1109/TED.2021.3075192.

[7] S. Myung, W. Jang, S. Jin, J. M. Choe, C. Jeong, and D. S. Kim,
“Restructuring tcad system: Teaching traditional tcad new tricks,” in
2021 IEEE International Electron Devices Meeting (IEDM), 2021, pp.
18.2.1–18.2.4, doi: https://doi.org/10.1109/IEDM19574.2021.9720616.

[8] S. Myung, B. Choi, W. Jang, J. Kim, I. Huh, J. M. Choe, Y.-G. Kim,
and D. S. Kim, “Comprehensive studies on deep learning applicable to
tcad,” Japanese Journal of Applied Physics, vol. 62, no. SC, p. SC0808,
2023, doi: https://doi.org/10.35848/1347-4065/acbaa6.

[9] W.-J. Lee, W.-T. Hsieh, B.-H. Fang, K.-H. Kao, and N.-Y. Chen, “Device
simulations with a u-net model predicting physical quantities in two-
dimensional landscapes,” Scientific Reports, vol. 13, no. 731, pp. 1–9,
2023, doi: https://doi.org/10.1038/s41598-023-27599-z.

[10] L. Ruthotto and E. Haber, “Deep neural networks motivated by partial
differential equations,” Journal of Mathematical Imaging and Vision,
vol. 62, pp. 352–364, 2020, doi: https://doi.org/10.1007/s10851-019-
00903-1.

[11] B. Kim and M. Shin, “A novel neural-network device modeling
based on physics-informed machine learning,” IEEE Transactions
on Electron Devices, vol. 70, no. 11, pp. 6021–6025, 2023, doi:
https://doi.org/10.1109/TED.2023.3316635.

[12] W. Jang, S. Myung, J. M. Choe, Y.-G. Kim, and D. S. Kim,
“Tcad device simulation with graph neural network,” IEEE Elec-
tron Device Letters, vol. 44, no. 8, pp. 1368–1371, 2023, doi:
https://doi.org/10.1109/LED.2023.3290930.

[13] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. liu, K. Bhattacharya,
A. Stuart, and A. Anandkumar, “Fourier neural operator
for parametric partial differential equations,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=c8P9NQVtmnO

[14] E. O. Brigham, The fast Fourier transform and its applications. Prentice-
Hall, Inc., 1988.

[15] Y. Choi, S. Myung, K. Kim, G. Kang, B. Jeong, Y. Jeon, S. Han, J. Jeong,
and D. S. Kim, “Real time tcad calibration via transfer learning,” in 2020
International Conference on Simulation of Semiconductor Processes and
Devices (SISPAD), 2024.

[16] S. Myung, I. Huh, W. Jang, J. M. Choe, J. Ryu, D. Kim,
K.-E. Kim, and C. Jeong, “Pac-net: A model pruning approach to
inductive transfer learning,” in International Conference on Machine
Learning. PMLR, 2022, pp. 16 240–16 252. [Online]. Available:
https://proceedings.mlr.press/v162/myung22a.html

[17] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning. PMLR, 2017, pp. 1126–1135. [Online]. Available:
https://proceedings.mlr.press/v70/finn17a.html

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 13:58:46 UTC from IEEE Xplore.  Restrictions apply. 


