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Abstract—We propose a Monte Carlo framework including 

(de)trapping to describe the non-equilibrium operation of 

charge trap flash memories. We thereby base the empirical 

carrier distribution that was proposed in recent studies on 

physical parameters. After an outline of the simulation 

procedure, we show how carrier trapping and detrapping is 

included. Finally, we illustrate the simulators’ capabilities via 

simulations of the programming and retention operations, 

highlighting the insight into the carrier dynamics that this 

approach enables. 
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I. INTRODUCTION 

As charge trap memories have made the transition towards 
vertical 3D-NAND strings and memory cells have been scaled 
down over the last decade, amorphous silicon nitride (� −
����� ) has been adopted as the storage material due to its 
easier integration process compared to a floating gate [1]. The 
resulting architecture is a semiconductor-oxide-nitride-oxide-
semiconductor (SONOS) stack, in which neighboring 
memory cells share the same charge trap layer (CTL). 
Therefore, in order to further scale charge trap memory cells, 
it becomes increasingly more important to understand the 
carrier transport within the CTL itself. This understanding is 
crucial for accurately predicting phenomena such as 
programming dynamics or lateral charge migration towards 
neighboring cells during retention. Existing models for 
programming charge trap memory often overlook energy 
relaxation. Our group has recently proposed a TCAD model, 
co-developed with Global TCAD Solutions [3], and a semi-
analytical model, called Pheido [2], that treat the energy 
relaxation empirically. Both rely on a shape function �, which 
characterizes the distribution of charge over the CTL and is 
usually assumed to take a Gaussian form. In this study, we 
develop a Monte Carlo framework to base this choice of � on 
a more physical basis and to calculate subsequently the charge 
distribution within the CTL. This is achieved by considering 
energy relaxation in combination with charge trapping and 
detrapping mechanisms. 

II. MONTE CARLO PROCEDURE 

We developed an ensemble Monte Carlo simulator for the 
Boltzmann Transport Equation that models the free-flight, 
scattering and (de)trapping of carriers in the CTL. Fig. 1 
shows the procedure: carriers are injected and can end a free 
flight by scattering or by getting trapped. Both scattering and 
trapping are treated as instantaneous events localized in space.  

    

Fig. 1.  Monte Carlo procedure, this flow is interrupted at fixed timesteps 
to solve the Poisson equation. 

Trapping implies a transition to a localized trapped state 
from which particles can only escape by detrapping.  

The electron trajectory in momentum-space is 
determined by the classical equations of motion considering a 
single isotropic parabolic energy band [4]. Both the duration 
of a free-flight (free state) and the duration of being trapped 
(trapped state) are determined by the self-scattering algorithm. 
Currently, only 1D electron transport is included.  

For the first simulations, we lump the various scattering 
mechanisms which occur in amorphous trap rich insulators 
together in an effective inelastic scattering rate. We 
characterize this scattering rate by a fixed energy independent 
rate �	 , fixed energy loss Δ�  and probability to scatter 
towards the front �
����  (1D simulation).   

Trapping, including trap filling, is described according to 
a simplified Shockley-Read-Hall theory as [5]:   

 �� = ������ − ����, ���         for � ≤ Δ�
0                                         for � > Δ� (1) 

with �� the capture coefficient, �� the total trap density and 
�� the trapped charge density at position � and time �. Energy 
dependence for the trapping rate is included by stating that a 
particle cannot be trapped when its energy with respect to the 
conduction band exceeds the energy that can be emitted by a 
single scattering event.  

 We model detrapping with a Poole-Frenkel model in 
order to include field dependence for the emission rate [6]:  

      �& = '() exp -./|ℰ�2,��|345
67� 8     with    β = : ;<

=>?>@ (2) 
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with '()  the attempt to escape frequency for emission, 
ℰ��, �� the electric field at position � and time �,  �� the trap 
energy depth with respect to the conduction band minimum, DE  the Boltzmann constant, F  the temperature, G  the 
elementary charge and HI  the high-frequency � − ����� 
dielectric constant.   

The boundary conditions imposed on the CTL interfaces 
are the same as those in the Pheido model [2], except for the 
injection energy. During programming, carrier injection at the 
tunnel oxide (TuOx) – CTL interface is described by a 
simplified Fowler-Nordheim equation:  

 JK� = G��LM�L exp NO5PQR
ℰ5PQRS (3) 

with ��L  the carrier density in the inversion layer at the 
channel – TuOx interface, M�L the carrier thermal velocity and 

 T�UV2 = �
�

/W;X∗
ℏ �E[

�/W  (4)  

given by the WKB approximation with �E[  the conduction 

band offset between the channel and the TuOx, ]∗  the 

effective tunnelling mass, and ℏ the reduced Planck constant. 

Note that ℰ�UV2 is a negative number (electric field pointing 

in negative � direction) when applying a positive gate bias, 

hence accelerating electrons in the positive � direction. The 
injection energy of the electrons with respect to the 
conduction band minimum of the CTL is given by (Fig. 2): 

 �K� = �E[ − �E[ − ℰ�UV2��UV2  (5) 

with �EW  the conduction band offset between the TuOx 
and CTL. All carriers that reach the CTL – BlOx interface 
disappear from the simulation, agnostic to the exact physical 
process by which this happens, e.g. lateral charge migration or 
tunnelling out through the BlOx. For retention, a similar 
worst-case scenario regarding the CTL interfaces is 
considered: all carriers that reach these interfaces disappear 
from the simulation. 

The Poisson equation is discretized on a rectangular grid 
spanning the whole device (TuOx, CTL and BlOx). It is 
solved on fixed timesteps at which the ensemble of carriers is 
interrupted. During a single timestep, carrier trajectories are 
calculated using the potential calculated at the beginning of 
that timestep. Hence, timesteps must be sufficiently short to 
prevent significant potential deviations within them. During 
programming, the detrapping rate (field dependent) is much 
smaller than the change rate for the electric field. However, 
the Poole-Frenkel detrapping rate depends exponentially on 
the field, therefore, it’s essential to re-evaluate the detrapping 
rate at least on the same the timescale as the variation in the 
electric field. 

III. MEMORY OPERATION SIMULATIONS 

We now illustrate the capabilities of the approach by 
simulating program and retention for the simple memory stack 
shown in Fig. 2. Other parameters can be found in Table 1. It’s 
important to note that these have not been tailored to a specific 
measurement, so the depicted simulation results should be 
viewed solely as a demonstration of the simulators’ 
capabilities. 

The incremental step pulse programming (ISPP) curves 
produced by the MC simulator can be fitted with Pheido using 
a uniform shape function S(x) (Fig. 3). Analysis of the MC 
results indicates that at low gate voltages, the charge centroid 
resides near the BlOx interface and then gradually moves 
towards the CTL center at higher gate voltages. Thus, a 
uniform S(x) becomes a suitable approximation (Fig. 4a-4b). 

 

Fig. 2. Band diagram at the start of programming, i.e. without trapped 
charge. The shaded region corresponds to the charge trap layer (CTL). In this 
region the electron transport is described by the Monte Carlo framework. The 
Poisson equation is solved for the complete device (TuOx, CTL and BlOx). 

TABLE I.  SIMULATION PARAMETERS  

Parameter Unit Value 

MC Pheido 

^ (area planar) �]W 2.5b5 

cdefA/gdh/ijfA �] 6/6/6 

ldemA/gdh/ijfA Hn 3.9/7.4/3.9 

stcuv w 0.5 

cv xy 100 

{|} ~]3� 2b21 

�c} ~]/y 1b7 

��� bw 3.15 

��� bw 1.3 − 

�∗ ]n 0.45 

�t y3[ 4b15 − 

�� bw 0.2 − 

���m{c − 0.9 − 

g| ~]�/y 5b-8 − 

�d ~]3� 4b19 

��� y3[ 5b7 − 

�c bw 1.6 − 

d � 300 − 

� ~]W/wy − 0.07 

� ~]3W − 2b-16 

�E[ 

�EW 
�K� 

   ��UV2            ����                    �O�V2  
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Fig. 3. ISPP curve from MC simulator and Pheido at different trap densities 

��. We use a voltage step w	�&� = 0.5w and programming pulse �� = 100xy. 

 
Fig. 4. Trapped charge density �� inside the CTL in function of time during 
programming. Initially trapped charge builds up near the CTL – BlOx 
interface. At higher gate voltages a more uniform charge profile is formed. 

 

Fig. 5. (a) Particle current, expressed in number of particles per Poisson-
timestep, in function of time during programming. We call the difference 
between the injection current and gate leakage current, the trapping current. 
Notice that this is not a physical current at one of the contacts of the device.  
(b) Trapping efficiency in function of time during programming. The 
trapping efficiency is the ratio of the trapping current and injection current. 

 
Fig. 6. Average particle injection and ejection energy for each Poisson-
timestep as a function of time during programming. The graph shows that 
injection happens via Fowler-Nordheim tunneling through the TuOx. 
Additionally, it indicates that a significant amount of carriers reach the CTL 
– BlOx interface with energies exceeding the nitride – oxide conduction band 
offset. 

 

Fig. 7. (a) Shift in threshold voltage Δw� and (b) shift in charge centroid �� 
during retention after ISPP up to w� = 23 w. The temperature dependence of 

the Δw�  curve can be attributed to the temperature dependence of the 
emission rate (Poole-Frenkel). 

 

Fig. 8. (a) Charge density and (b) electric field during a 3-weeks retention 

simulation at temperature F = 450 �. Charge loss initially occurs near the 
TuOx and BlOx interfaces.  

The main advantage of the MC simulator over Pheido is the 
detailed information on the carrier dynamics which can be 
extracted. For example, Fig. 5a illustrates the injection 
current, gate leakage current and trapping current (injection 
minus leakage) as number of particles per Poisson timestep. 
The trapping efficiency in Fig. 5b is given by the ratio of the 
trapping current and injection current. Starting from the onset 
of programming, this value is mainly below 10% in the current 
simulation setup. The carrier dynamics can be studied further 
by examining the particles’ injection and ejection energy, 
shown in figure Fig. 6. A specific tunneling-out model for the 
BlOx is omitted in the simulator, but the graph illustrates that 
a significant number of particles reach the CTL – BlOx 
interface with energies larger than the nitride – oxide 
conduction band offset. Again, this is only valid for the given 
set of scattering and (de)trapping mechanisms and parameters, 
which are not calibrated. Further information can be extracted 
in the form of energy distributions, the occurrence of 
detrappping events etc. (not shown).  

Only high temperature retention simulations with the MC 
simulator are currently justified, due to the dominance of trap-
to-band tunneling over Poole-Frenkel emission at room 
temperature [3]. Our simulation spans a retention time of three 
weeks with hourly electric field updates. The initial state is the 
final state after ISPP up to w� = 23 w . Poole-Frenkel 

detrapping is evident only at high temperatures (eq. 2, Fig. 7a) 
and throughout retention the charge centroid gradually shifts 
towards the CTL center (Fig. 7b). This is explained by Fig. 8, 
which demonstrates that for F = 450� charge loss primarily 
occurs at the CTL interfaces due to higher electric fields 
compared to the CTL center (eq. 2). 

w� = 10 w w� = 10 w 

w� = 17 w w� = 23 w 

� ↗ � ↗ 

� ↗ 

� ↗ 
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IV. CONCLUSIONS 

We propose a Monte Carlo framework which includes 
(de)trapping mechanisms and have demonstrated that this 
approach captures the programming and high-temperature 
retention behavior of charge trap flash memory. Additionally, 
the simulator offers valuable insights into carrier dynamics. 
Future work will focus on extending the framework with 
additional scattering and (de)trapping physics, and 
2D/cylindrical coordinates. 
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