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Abstract—In this work, we propose an attention-based global 
field heterogeneous graph neural network (GFGNN) to 
characterize global field and dynamic features of the open system, 
aiming to accelerate or even bypass the computationally 
demanding self-consistent iterations of NEGF and substantially 
improve the efficiency of quantum transport calculations. 
Representing the device with a heterogeneous graph largely 
preserves its intrinsic physical characteristics, while the global 
graph attention network effectively captures the propagation of 
nonlocal physical information and mitigates prediction accuracy 
issues due to device scaling. GFGNN has been verified to have 
strong predictive power on 2D MoS2 DG-MOSFETs, with 
MAE(mean absolute error) as low as 2.1~3.3 meV for potential 
profile prediction. By incorporating GFGNN into the NEGF 
computing framework, an acceleration of 182.22~635.71% can be 
achieved while maintaining the accuracy of transport property 
calculations.  
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I. INTRODUCTION (HEADING 1) 
As transistor dimensions approach the physical limits of the 

material, there is a growing need to develop a new generation of 
atomic-level simulation tools that can provide predictive 
insights and experimental guidance. The non-equilibrium 
Green's function (NEGF) method is a crucial tool for calculating 
the quantum transport properties of a system[1]. However, the 
self-consistent iteration of the transport and Poisson equations 
in NEGF requires significant computational resources, making 
the acceleration of the NEGF method a crucial issue in device 
simulation. In recent years, machine learning (ML) has had a 
significant impact on density-functional-theory (DFT) 
research[2-4]. The method of introducing ML in the confined/ 
periodic system studied by DFT has matured, while the method 
of introducing ML in the open system studied by NEGF is still 
in its early stages(as shown in Fig. 1). 

 In this work, we propose an attention-based global filed 
heterogeneous graph neural network(GFGNN) capable of 
characterizing global field and dynamic features for the open 
system problem. The flow of our acceleration method is: use the 
existing simulation/experimental data to train the GFGNN, 

when using NEGF method to calculate the transport properties 
of the unknown structure, we can use the trained GFGNN to 
predict a potential/charge distribution close enough to the real 
solution, which allows to reduce the number of self-consistent 
iterations or even skip self-consistent iterations directly. To 
illustrate this approach, we provide an example of its application 
to 2D MoS2 DG-MOSFETs. For our experiments, we kept the 
source/drain length, doping concentration, and unit-cell type 
fixed. We used small channel length devices (LCH = 7.1 
nm~12.07 nm, step = 0.71 nm) as a training set to predict the 
potential distribution of larger channel devices (LCH = 
12.78/13.49/14.20nm). The mean absolute error (MAE) 
between the predicted and target values were 2.1/2.6/3.3meV, 
respectively. The NEGF calculation speedup has reached 182.22% 
to 635.71%, while maintaining accurate transport calculation 
results.  

II. SIMULATION METHOD 

A. Dataset 
The transport properties of 2D MoS2 DG-MOSFETs (as 

shown on the left side of Fig. 2) were simulated using the kp-
NEGF approach. The doping concentration and length of 
source/drain is 2.86 × 1013 cm-2 and  7.1nm(LS/LD), 
respectively. The gate dielectric is HfO2 of 1nm thickness and 
channel length(LCH) varies in the range of 7.1-14.2 nm (step =  
0.71nm). We set VG = 0-0.6V (step = 0.1V) and VDS = 0-0.5V 
(step = 0.05V). Eventually 847 device states were generated. 
Since each atom(unit-cell) of the device is trained independently 
in the GFGNN, the total amount of data is 148225. 

B. Confiend/periodic system VS open system 
 In this section, we will examine the distinctions and 
interconnections between confined/periodic and open systems, 
with a particular focus on their application in the context of 
neural network algorithm implementation. In the case of a 
confined/periodic system, by approximation, for each atom, we 
can consider only the influence of atoms within the surrounding 
radius R0 on it Fig. 1(a). Regardless of the size of the system, 
there are a finite number of types of central atoms and local 
environments, so as long as we have iterated through all the 
types of central atoms and local environments to be studied in 
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our training, we can decompose the arbitrarily large system into 
many subproblems with central atoms and their local 
environments. After summarizing the contributions of each 
subproblem we can predict some properties of the system to be 
studied as a whole.  

 Unlike DFT method, NEGF method address the issue of an 
open system where electrodes are introduced. This is illustrated 
in the Fig. 1(b). The electrodes are capable of exchanging 
electrons with the atoms of the system and/or keeping these 
atoms under a global electric field. At this point, if we still 
follow the same approach as in the confined/periodic boundary 
case, problems arise: (1) Lack of means to represent the different 
boundary conditions imposed by the contact electrodes. (2) 
Limitations of the local approximation description. 

 In an open system, it is necessary to devise novel 
methodologies for addressing challenges. 

 
Fig. 1. (a) Confined/periodic system. Consider the influence of atoms within 
R0 around the center atom. (b) Open system with three terminal: source 
electrode, drain electrode and gate electrode. The gate brings an additional 
electric field, but no electrons are exchanged. 

C. Heterogeneous Graph of MOSFET 
 In the study of neural networks, it is very important to 
adequately characterize the input data. The characterization 
serves as a bridge between the input data and the neural network, 
which is related to both the extent to which the information in 
the input data can be retained and represented, and the ability of 
the neural network to efficiently learn and capture the 
knowledge. 

 To be specific, in the MOSFET structure, we have to deal 
not only with the introduction of the source/drain electrodes, but 
also with the introduction of the gate electrodes. The key for us 
to deal with these problems is to abstract the device structure 
using a heterogeneous graph[5], as shown in Fig. 2. We abstract 
the MOSFET into three types of nodes: device nodes, electrode 
nodes and gate nodes. Device nodes contain three features: 
atom(unit-cell) type(Z), doping concentration(D), and 
potential(PD). In the dataset, since Neumann boundary condition 
is used at the source/drain electrode, electrode nodes and device 
nodes are not differentiated in the heterogeneous graph 
according to our method, so the device nodes mentioned later 
actually include electrode nodes. Device nodes are connected to 
each other by bi-directional edges with a distance feature(RD). 
Gate nodes contain only the potential feature(PG). Gate nodes 
and device nodes are connected by unidirectional edges with a 
distance feature(RG).  

 In the device graph contains several nodes and edges, all of 
them have their own features, from the basic physics, we can 
categorize these features, for example: atom(unit-cell) type, 
doping, inter-atomic distance, and gate node potentials are fixed 
features, while the potentials of device nodes are indeterminate 
variable features, and the two types of features play different 
roles in the network: only the variable features will be updated 
in the propagation of network, and the process is affected by the 
joint influence of the fixed features and the variable features. 
These are meticulously processed in the GF-GAT layer(Fig. 3). 

 Note that, all features must pass through the embedding layer 
(Z, D, PD, PG) or be expanded using the Gaussian basis (RD, RG) 
before being input to the GF-GAT layer(as shown on the right 
side of Fig. 2). The construction of this graph includes our full 
consideration of the physical mechanisms of the MOSFET. 

 
Fig. 2. Heterogeneous graph abstraction of MOSFET. Yellow represents 
electrode nodes, blue and green represent device nodes, and red represents gate 
nodes. Electrode nodes and device nodes have features including: atomic(unit-
cell) type, doping, and potential, and these nodes are connected to each other 
by bidirectional edges. Gate nodes have only potential feature, which are 
connected to electrode/device nodes by unidirectional edges. Both bidirectional 
and unidirectional edges have a distance feature. Notably, electrode nodes have 
multiple edges pointing towards themselves, characterizing the semi-infinite 
electrodes. 

D. GF-GAT 
The most central part of GFGNN is the GF-GAT layer. 

Inspired by Transformer's global attention mechanism[6], and 
taking advantage of the simplicity of the GAT network in 
attention computation[4,7], we propose the so-called Global 
Field Graph Attention(GF-GAT) Layer. Unlike the general 
GAT, instead of setting a truncation radius, we let each device 
node in the graph pay attention to all other nodes, and the degree 
of influence of different nodes on the central node is jointly 
determined by their respective node features and distance 
features. After propagating the field information through the 
GF-GAT layers, it enters a fully connected layer and outputs the 
predicted potential. 

 As shown in Fig. 3, before the NEGF transport calculation 
enters the self-consistent iteration, we first use the trained 
GFGNN to predict the final potential distribution based on the 
device structure and the applied voltages. Then we can use the 
predicted potential distribution as the initial value of the self-
consistent iteration to reduce the number of iteration steps. 
Furthermore, within the acceptable accuracy, we can skip the 
self-consistent iteration and calculate the transport property 
directly. 
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Fig. 3. Architecture and workflow of the neural network. Firstly, the features 
are embedded or expanded, then the device graph is fed into a network 
consisting of GF-GAT Layers and a full connect layer for training, and finally, 
the trained GFGNN can be embedded into the simulation framework of NEGF 
for prediction and acceleration. 

III. RESULT AND DISCUSSION 
In the experiment with MOSFETs we performed two tests: 

(1) To test the extrapolation capability of GFGNN in a three 
terminal device: we fix the length of the source-drain region 
unchanged (LS = LD = 7.1nm), vary the length of the channel 
region LCH = 7.1nm∼12.07nm(step = 0.71nm), and the data of a 
total of 8 MOSFETs is used as the training and validation sets. 
The length of the channel region LCH is then extended to 
[12.78nm, 13.49nm, 14.20nm] as the test set. In particular, VD 
varies in the range of 0V∼0.5V(step = 0.05V) and VG varies in 
the range of 0V∼0.6V(step = 0.1V). The training data contains 
a total of 103,180 data points.  

(2) GFGNN-predicted potential is directly computed for the 
transport properties in a non-self-consistent step: in previous 
tests, we have added the GFGNN-predicted results as initial 
values to the self-consistent iteration, and we have been able to 
achieve good acceleration as long as the GFGNN predicted 
results are sufficiently close to the end value of the iteration. 
Here, we will input the predicted results from test(1) directly 
into the non-self-consistent step as the iteration end value to 
compute the transport properties. Since the self-consistent 
iterative process is completely skipped, this method can achieve 
the best acceleration results, but accordingly, the loss of 
accuracy needs to be quantitatively considered.  

A. Result of test (1) 
In Fig. 4(a-c), we show the comparison between the 

predicted and target values of the potential distribution at VD = 
0.25V for LCH = [12.78nm, 13.49nm, 14.20nm], and the curves 
are in high agreement (with little difference in the error when VD 
is taken at other values). In Fig. 4(d-f), we plotted the 
distribution of MAE between the predicted and target values in 
the three devices and calculated the average MAE, which are 

0.0023eV,0.0046eV,0.0067eV, respectively, all in the meV 
order of magnitude.  

 
Fig. 4. Extrapolation capability test of GFGNN in MOSFETs. Comparison 
between the predicted and target potentials of the MOSFETs for fixed 
source/drain length(LS/LD) = 7.1nm and channel length(LCH) = (a) 12.78 nm (b) 
13.94 nm (c) 14.20 nm, respectively, which contains the case of VD = 0.25V 
and VG = 0V/0.3V/0.6V. (d-f) MAE distribution predicted for all voltage points 
for cases in (a-c), where the average MAE is 0.0021eV/0.0026eV/0.0033eV 
respectively. 

It is also worth noting that the potential distribution predicted 
by GFGNN shows a bump in potential between the source and 
the channel, which is not present between the drain and the 
channel. This is a reflection of the DIBL effect in device physics, 
which again demonstrates GFGNN’s ability to capture and learn 
from the intrinsic physics. Next, we embedded the trained 
GFGNN into the NEGF computational framework to verify the 
acceleration effect. The good acceleration effect of the GFGNN 
at each voltage point is demonstrated in Fig. 5(a-c), and the 
acceleration is 184.85%, 189.74% and 182.22%, respectively. In 
the ID − VG curves (Fig. 5(d-f)), NEGF and GFGNN+NEGF are 
also in high agreement with R2 = 0.9992/1.0000/0.9999, 
respectively.  

B. Result of test (2) 
Unlike previous test, we take the potential predicted by the 

GFGNN directly as an input to the non-self-consistent step. 
Since the accuracy of the GFGNN predictions is sufficiently 
high, the computed transport properties maintain an accuracy 
close to that of the conventional computational framework, but 
the computational speed is dramatically improved. Fig. 6(a-c) 
illustrate the comparison between the NEGF and the 
GFGNN+NEGF ID − VG curves without self-consistent, both of 
which have R2 = 0.9997/0.9961/0.9996, respectively. Fig. 6(d-
f) demonstrates the LDOS as well as the error distribution for 
both.  
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To quantify the speedup, we measured the computational 
time in terms of the number of transport equation solutions that 
need to be performed in the computation (since the transport 
equations are the main time consuming part of the NEGF 
computation). In the calculations in Fig. 6(a-c), NEGF requires 
68/81/89 steps, whereas in the non-self-consistent 
NEGF+GFGNN it requires 14 steps, with a speedup of 485.71%, 
578.57% and 635.71%. 

 
Fig. 5. Acceleration capability and computational accuracy of GFGNN-
embedded NEGF in MOSFETs. (a-c) Comparison of the number of iterations 
per voltage point(VG) between conventional NEGF and GFGNN-embedded 
NEGF for the cases of LCH = 12.78 nm/13.94 nm/14.20 nm, with the 
acceleration = 184.85%, 189.74% and 182.22% respectively. (d-f) are the 
comparison of ID−VG curves calculated by conventional NEGF and GFGNN-
embedded NEGF in the above cases, with R2 = 0.9992/1.0000/0.9999, 
respectively. 

IV. CONCLUSION 
We propose an attention-based global filed heterogeneous 

graph neural network(GFGNN) capable of describing global 
field and dynamic feature of the open system. Using 2D MoS2 
DG-MOSFETs as an example, we demonstrate the powerful 
capability of the GFGNN and achieve 182.22~635.71% speedup 
for the NEGF computation. Although the examples are 
relatively simple, our method is applicable to more complex 
device structures and more feature types. We believe that the 
GFGNN-based acceleration method for transport computation 
extends the research paradigm of data-driven scientific 
discovery from the field of DFT to NEGF. And similarly, as an 
atomic (unit-cell) level neural network, which is capable of 
learning transport properties from the most intrinsic point of 
view. Combined with networks used in DFT, it is capable of 
achieving quasi-DFT+NEGF level transport property prediction, 
which will have a great facilitating effect on the exploration and 
discovery of new materials and devices in the future. 

 
Fig. 6. Acceleration capability and computational accuracy of GFGNN-
embedded NEGF(Skip the self-consistent iteration) in MOSFETs. (a-c) 
Comparison of ID−VG curves between conventional NEGF and GFGNN-
embedded NEGF for the cases of LCH = 12.78 nm/13.94 nm/14.20 nm, with R2 
= 0.9997/0.9961/0.9996 and the acceleration = 485.71%, 578.57% and 635.71% 
respectively. (d,e) LDOS caculated by conventional NEGF and GFGNN-
embedded NEGF. (f) The error distribution. 
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