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Abstract—Using a microscopic picture of atomic movement
we rederived the Fick's diffusion flux equation which naturally
includes all types of drift causing terms (e.g. electrical drift, stress
driven movement, and binding energy related effects). With a
similar method, two-phase segregation transfer rate and three-
phase segregation trapping/emission rates are also defined with
measurable or calculable quantities.

Index Terms—Fick's law, segregation, diffusion, trapping,
emission, two-phase segregation, three-phase segregation

I. INTRODUCTION

As three-dimensional stacking is widely used in state-of-
the-art semiconductor fabrication, accurate modeling of dopant
trapping at interfaces or dopant movement across interfaces
becomes critical to optimize the process conditions. However,
the interface modeling, especially at the amorphous interface,
is challenging due to the lack of carefully designed experi-
mental data or established theoretical calculation methodol-
ogy. Specifically the interface segregation model parameters
lack corresponding quantities from the atomistic calculations.
Therefore the segregation transfer rate has been determined
somewhat arbitrarily without a supporting theory. To overcome
such difficulties, we derived a microscopic interface segrega-
tion parameters using accessible physical quantities.

II. THEORY AND MODELS

A. Generalized Fick's law

As the first step, we re-derived the Fick's first law using
the microscopic atomic movement. Let's consider an atomic
hopping in a three-dimensional space as shown in Fig. 1. The
net hopping rate of an impurity at position x is given by

Fig. 1. Schematics of atomic hopping and free energy.
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where ν0 is the attempt frequency, ∆Ga the activation energy,
∆G (G1 −G2) the free energy difference between the initial
and the final state, a the hopping distance, kT the thermal
energy, and µ the chemical potential. ∆G � kT is assumed
in the approximation step which implies that the free energy of
the impurity at stable position varies slowly in atomic hopping
length scale. The flux to x direction is given by the product
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of the areal impurity density(σ(x)) and the hopping rate:

Jx = −σ(x)R, (6)
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where c(x) is the volume concentration of the impurity and
D the diffusivity. The chemical potential can be expressed as
[1]
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)
, (9)
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where µ0 is the reference chemical potential, c(x) the impurity
concentration, ceq(x) the equilibrium impurity concentration,
c0 the allowed site density for the impurity, and gf the
formation Gibbs free enegy. Plugging Eq. 10 into Eq. 8 yields
the generalized Fick's first law.

Jx = −Dceq(x)
d
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c(x)
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)
. (11)

In a uniform, homogeneous material, gf (x) and ceq(x)
are constant throughtout the space and does not have any
effect on diffusion. However, any spatial variation in ceq

can cause a drift of the impurity. More explicitly, gf can
include the electric potential energy of ionized impurity, the
stress response energy, the energy due to the entropy of
configuration, and the binding energy between the impurity
and the host material. In diffusion simulation, the electrical
drift effect is well known and it is usually treated as a separate
term. Using the generalized form of the Fick's law (Eq. 11) all
drift terms can be described by a single term ceq(x). Extending
the concept of the electrical drift to cover other effects, Eq. 11
can be rewritten as:
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where qi is the generalized charge and φi(~r) the corresponding
generalized potential (see table I for details).

TABLE I
DRIFT CAUSING GIBBS FREE ENERGY TERMS

Formation free energy term charge(qi) potential(φi(~r))
electric potential energy electric charge electric potential
stress response energy activation volume stress or pressue
binding energy binding energy pairing probability
T× entropy temparature entropy

B. Interface segregation parameters
Deriving the transfer rate at a material interface is similar to

deriving the Ficks law. However, ∆G� kT assumption is no
longer valid across the interface, where abrupt changes of any
physical quantity are allowed. To describe such conditions, the
impurity concentrations and the segregation factors need to be
defined on each side as shown in Fig. 2. Furthermore, there are
differences in hopping distance (a1 and a2) and the attempt
frequency (ν1 and ν2) on two sides. Then the flux across the
interface is given by

Jx = Jf − Jr, (14)
= σ1kf − σ2kr, (15)
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where D1(D2) is the diffusivity of the impurity in material-
1 (material-2), C1(C2) the concentration of the impurity
in material-1 (material-2), s1(s2) the equilibrium solubility
in material-1 (material-2), and ∆Ea the extra barrier. By
comparing Eq. 18 with the conventional two-phase segregation
rate [2], the two-phase segregation transfer rate (h) can be
defined using measurable or calculable quantities.
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(
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)
. (19)

When the hopping length and the attempt frequency are
similar in both sides (a1 ∼ a2 and ν1 ∼ ν2), the transfer flux
can be simplified to the conventional form [2].

Jx = h

(
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)
, (20)

Previously the transfer rate was usually chosen somewhat
arbitrarily in diffusion simulations because it is an abstractized
physical quantity without clear connection to measurable or
calculable quantities. With more careful consideration of the
interface energy diagram (Fig. 3), the transfer rate (h) can have
a symmetric form like

h =

√
D1D2

a
exp

(
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kT

)
, (21)

where a ∼ a1 ∼ a2 is assumed.
When there are traps at the interface, three-phase segre-

gation model [3] should be used. Based on Fig 4, the flux
equations can be derived as:

J1 = Jf1 − Jr1 , (22)

= σ1k
f
1

σMax − σi
σMax

− σikr1
CSol1 − C1

CSol
, (23)
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Fig. 2. Energy diagram for two-phase segregation using the E1 as the
activation barrier with an addition barrier ∆Ea (a) and the average value
as the activation barrier (b).

Fig. 3. Various configurations of energy diagrams at interface for two-phase
segregation parameters. The case a) and c) depict the E1 as the activation
barrier and b) and d) represent the E2 as the activation barrier. The two cases
can be considered as the limiting cases and more reasonable choice would be
the averaged value with an additional barrier as shown in Fig 2 b).

where σMax is the areal trap density at the interface, σi the
occupied trap density, CSol1 the solubility of the impurity in
material-1, C1 the impurity concentration in material-1. Note
that the trapping and emission fluxes in Eq. 23 are scaled by
the available trap ratio

(
σMax−σi

σMax

)
and the available soluble
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)
, respectively.
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where σMax is the areal trap density of the interface, σi
the areal trapped impurity density, CSol1 the solubility of the
impurity in the material-1, C1 the impurity concentration at
material-1, νi the attempt frequency at the interface.

By comparing Eq.25 with [3], the key parameters can be
defined as:
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where t1 (e1) is the trapping (emission) rate from (to) the
material-1. Similarly, t2 and e2 can be defined by changing
the subscript 1 to 2. For practical numerical simulation, it
would be useful to treat νi/ν1 ∼ 1 and ∆Ea1 as a calibration
factor.

At equilibrium (J1 = J2 = 0), the dilute limit approxima-
tion (C1 � CSol1 and C2 � CSol2 ) of Eq. 25 yields the same
segregation ratio as the two-phase model.
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Fig. 4. Energy diagram for three-phase segregation parameters.

III. APPLICATIONS AND DISCUSSIONS

We applied Eq. 13 to simulate boron (B) diffusion in
strained Si0.8Ge0.2. Fig. 5 illustrates the sample structure and
diffusion results. The five-stream diffusion model [4] was
utilized to fit the secondary ion mass spectrometry (SIMS)
data. Initially, B diffusivity was calibrated to fit the profile in
the unstrained silicon region (the right side of the sample in
Fig 5). Subsequently, the diffusion stress factor and the stress
dependent drift term (ceq(x)) were applied, which were based
on the induced strain value at the transition state and the substi-
tutional position, respectively. We employed exp

(
− 2.4e−29P

kT

)
as the diffusivity stress factor and exp

(
1.8e−29P

kT

)
as the
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ceq in SI units, where P represents the pressure. Detailed
descriptions of the induced strain values and methodology are
provided in [5], [6].

Fig. 5 shows the effect of the ceq(x) term from Eq. 11.
This term induces a drift when Ge concentration changes
rapidly, causing B to segregate into the compressively strained
Si0.8Ge0.2 region. In the absence of this term, the B profile is
less abrupt at the edge of the Ge profile, as indicated by the
dashed orange line in Fig. 5. If the simulation continues until
the diffusion equilibrium state is reached, it will result in a
step-like profile at the edge of the Ge profile. When additional
position dependent free energy terms are present, Table I and
Eq. 13 can properly describe the drift effects.

Fig. 5. B diffusion at 850◦C. The inset is a magnified view near the edge of
the Ge profile to visualize the effect of the generalized drift term (ceq). The
as-doped SIMS profile within the strained-Si0.8Ge0.2 region was scaled up
by 5% to match the dose of the diffused profiles.

Usually, the two-phase segregation transfer rate is set to
a large value compared to the rate determined by Eqs. 19
or 21. Fig. 6 shows an example of parameter values based
on [7], [8]. When the transient behavior at the interface is
not of interest, a large transfer rate is a safer choice, as a
small value would cause exteremly slow evolution. However,
when the transient segregation behavior is also important,
Eq. 21 provides a baseline for determining the transfer rate
with the additional calibration parameter ∆Ea. Although the
example calculation of the two-phase segregation parameters
was performed using boron parameters at the SiO2/Si interface
due to the limitation of available published data, the three-
phase segregation model is usually employed for those cases
[3] and the two-phase segregation model is more useful for
scenarios where the interface trap is not explicitly simulated,
such as hydrogen diffusion through the middle- or back-end-
of-line stack.

Defining the trapping and emission rates of the three-phase
segregation parameters has been even more challenging than
for the two-phase segregation transfer rate because poorly
defined parameter values outside of a reasonable range can

cause convergence failures during simulations. Eqs. 27 and 28
offer a straightforward formula to determine baseline values
for the trapping and emission rates using fundamental physical
quantities. Note that Gi may include additional energy of
a point defect if a point defect is involved in the trap-
ping/emission process.

Fig. 6. Calculation example of two-phase segregation transfer rate using B
parameters. The half of the silicon lattice constant was used as the value of
a. ‡:Ref [7], †:Ref [8].

IV. CONCLUSION

Using the free energy diagram of the atomic movement, the
Fick's first law was generalized to include all types of drift-
inducing terms (e.g. electric potential energy, stress response
energy, binding energy, TS). This approach is useful for
describing continuous bulk segregation effects. Employing
the same methodology, interface segregation parameters were
formulated using tangible physical quantities, providing a
straightforward method to define baseline values.

ACKNOWLEDGMENT

The SIMS data were obtained from FP6 European project
(Grant No. 027152) ATOMICS.

REFERENCES
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